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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War II
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the 1esearch, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBriDGE.
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Preface

HE title of the present volume, Electronic Instruments, carries with it

the implied adjective ‘‘some.” The specific kinds of electronic
instruments which are treated are elecironic analogue computers, instru-
ment servomechanisms, voltage and current regulators, and pulse test equip-
ment. Aside from the common denominator indicated by the title,
these four types of equipment share claims as important adjuncts to
many modern radar systems.

It has been the object of the authors to present both theoretical
background and practical details of these instruments as they were
known to the radar engineer. However, the authors believe firmly that
radar applications of these devices represent only a very small part of
their field of utility. An attempt has been made to emphasize the sort
of information which the authors felt would have been most helpful to
them when they were required to solve problems in the fields represented
by this volume.

The preservation of the material of this volume was made possible
through the foresight of I. I. Rabi and L. A. DuBridge, who appointed a
committee consisting of L. J. Haworth, G. E. Valley, and B. Chance to
consider the scope and content of a series of books on the general subject
of electronic circuits. Volumes 17 to 22 of the present series are the
result of the committee’s survey. At the termination of hostilities an
intensive writing program, under the leadership of L.N. Ridenour, was
put into effect. Because of the rapid dissolution of the Radiation
Laboratory, an accelerated writing schedule, using as many authors as
possible, was unavoidable. Even with such a policy many authors made
real sacrifices in giving up or postponing positions and fellowships in
order to complete their contributions. The combination of accelerated
schedules and divided efforts has regrettably resulted in discontinuities in
the scope and treatment of the material covered, and in many cases has
led to historical study inadequate for the proper assignment of credit for
developments reported.

At the termination of the Radiation Laboratory Office of Publi-
cations, some of the writing, much of the editing, and all of the proof-
reading of the present volume still remained to be done.  Credit for the



PREFACE

completion of this vclume belcngs in a large degree to the General Pre-
cision Laboratory Inc., of Pleasantville, N.Y. This Laboratory gener-
ously permitted one of the technical editors of the present volume to
devote a large fraction of his time over a period of many months to the
project, and made available extensive secretarial and drafting assistance.
In addition, much of the manuscript was read and criticized by other
members of the staff. Credit is due the many authors who assisted in
the checking of proofs long after they had left the employ of the Radi-
ation Laboratory.

Many of the developments described in this volume are contributions
from laboratories in the United Kingdom. It is a pleasure to acknowl-
edge the unstinting support of these British laboratories, and especially
of Telecommunications Research Establishment (TRE). Through their
generosity, several experts have visited this country and have contributed
much useful information to this and other volumes of the Radiation
Laboratory Series. Our gratitude for this international cooperation is
due Sir Robert Watson Watt, W. B. Lewis, B. V. Bowden, F. 8. Barton,
F. C. Williams, and N. F. Moody, and their associates.

Background material on which parts of this volume are based was
contributed by H. S. Sack of Cornell University.

The preparation of manuseript and drawings would have been impos-
sible without the help of the production department under C. Newton;
the Technical Coordination Group, under Dr. Leon Linford; the typing
pool, under M. Dolbeare and P. Phillips; and the drafting room, under
Dr. V. Josephson. The authors wish to acknowledge the invaluable
help of the following editorial assistants, production assistants, and
secretaries: Louise Rosser, Nora Van Der Groen, Joan Brown, Helene
Benvie, Teresa Sheehan, Joan Leamy, Barbara Davidson, and Helen
Siderwicz, all of the Radiation Laboratory, and Mary Pollock, Nora
Applegate, and Gordon Clift of General Precision Laboratory.

THE AUTHORS.
CAMBRIDGE, Mass.,
October, 1946.

F(:

PE



Conlents

FOREWORD BY L. A. DuBRIDGE . . . . . . . . . . . . . . . . . . vi

PREFACE . . . . . . . . . . e e

PART I. ELECTRONIC ANALOGUE COMPUTERS

Cuar. 1. INTRODUCTION . . 3
1.1. General Comments on Computers . . . . . 3

1-2. Types of Computers and Computer Elements . ... b

1.3. Limitations of Scope and Planof PartI. . . . . . . . . . . . 8

1.4, Speed of Computations. . . ]

1-5. The Computer Problem. . . . . . . . . . . . . . . . ... 10

1.6. Summary. . . e 10

Cuap. 2. COMPUTER DESIGN. . . . . . . . . .. .. ... .... 11
2-1. Introduction. . . . R |

2-2, Summary of a Systematlc Desxgn Procedure T § |

Basic PrincirLeEs AND TECHNIQUES . . . L e 14
2-3. Rearrangement of Computer Equatlons e 14

2.4, Explicit Analogue Computers . . . . . . . . . . . . .. 15

2-5. Implicit Function Techniques e 1

2-6. Tolerances and Errors . . . Lo 21

2-7. The Use of Servomechamsms in Computers ... .. ... 23

2.8. Error Cancellation. . . . o .24

2-9. Data Smoothing, Speed of Operatlon and Stablhty ... .. 25

2:10. Reduction of Weight, Size, and Power Dissipation . L. .. 26
REPRESENTATION OF QUANTITY. . . . . . . . . « . « « . « o . . .. 27
2:11. Fundamental Concepts. . . . Y 4

2-12. Seventeen Important Types of Data Representatlon A 28

2.13. Some Characteristics of Various Types of Representations . . . 29

2:14, Summary. . . . . . . . . . . . ... oo 008

Caar, 3. ARITHMETIC OPERATIONS . . . . . . . . . . . ... . . 32
3-1. Introduction. . . . e 32

3-2. Addition Using Parallel Impedance I\etw orks e e 32

3:3. Addition and Subtraction with Series Sources . . . . . . . . . 35

3-4. Addition and Subtraction with Synchros . . . . . . . ... 36



3-10.

CONTENTS

Impedance Addition and Subtraction .

Addition and Subtraction with Mechanieal I)cwcoa
Addition of Time Delays .

Addition and Subtraction of Pulse COI]I][b

Addition and Subtraction by Simple Vacuum-tube Cer\llts .

Discrimination .

MULTIPLICATION AND DIVISION .

3-11.
312,
3-13.
3-14.
3-15.
3-16.
3-17.

InENTITY
3-18.
3-19.
3-20.
3:21.

Mechanically Controlled V olt'\ge Dividers or \Iultlplwrs .
Electronically Controlled Voltage Dividers .
Variable-gain Amplifiers and Modulators .

Special Nonlinear Methods of Multiplication .

Bridge Methods .

Multiplication by the Imegratlon I\Iethod

Miscellaneous Techniques and Devices .

OPERATIONS .

Change of Voltage Level .
Change of Impedance .
Change of Scale . .
Change of Representation .

Cuap. 4. CALCULUS .

4-1. Introduction .
IDIFFERENTIATION .
4.2. RC Circuits . . .
4-3. Condenser Circuits Emplovmg Specml Current Amphﬁers
4-4. Differentiation Based on Inductance .
4-5. Electrical Tachometers.
4-6. Mechanical Differentiators .
INTEGRATION . L
47. RC Integratmg Circuits . o
4-8. Integration Based on Inductance.
4.9. Integrators Employing Tachometers .
4-10. Watt-hour Meters as Integrators.
4-11. Mechanical Integrators.

Crar. 5. THE GENERATION OF FUNCTIONS.

5-1.

Introduction .

CurvE FITTING .

5-2.
53.
54.
5-5.

Construction of Nonlinear Elements .
Nonlinear Functions with Simple Elements .
Curve Fitting with Linear Potentiometers.
Other Combinations of Simple Elements .

TricoNoMETRIC FUNCTIONS .

5-6.
5-7.

Variation of Electrical Couplmg by Rotation .
Sine and Cosine Potentiometers .

36
39
34

64
64

64

64
72
72
74
76

78

78
82
83
87
88




CONTENTS

5-8. Mechanical Methods.
59. Waveform Methods . P
5.10. Inverse Trigonometric Functlons .......

MisceLLaNeous FuncTions . . . . . .
5-11. Powers and Roots . . . e
5-12. Exponentials and Logarlthms ......
5.13. Integro-differential Functions . . . . . .

Char. 6 GROUPED OPERATIONS . . . . . . ..

6:1. Introduction. .
6-2. Feedback and Imphmt I*unctwns .

THE SoLUuTION OF RiGHT TRIANGLES.
6-3. The Problem of Right-triangle Solution. .
6-4. Algebraic Methods of Right-triangle Solution .
6-5. Curve-fitting Methods for Triangle Solution.
6.6. A Parabolic-waveform Method.
6-7. Phase-shift Triangle Solution .

TwO-DIMENSIONAL VECTORS AND TRANSFORMATIONS .

6-8. The Mathematical Expression of Transformations .

6:9. Rotation of Rectangular Coordinates.
6-10. Polar to Rectangular Transformations .
6-11. Rectangular to Polar Transformations . .
6-12. Special Coordinate Transformations .
Ciar. 7. EXAMPLES OF COMPUTER DESIGN.

7-1. Introduction.

NavigaTioNal, COMPUTER . . . . . . .

7-2.  Preliminary Information . . .

7-3. Creating a Block Diagram .

7-4. Preliminary Design. . . . . . ..
7.5. Performance Analysis. . . . . . . .

7-6. Detailed Design . . . . . . . .
7-7.  Finishing the Design.

SPHERICAL COORDINATE [NTEGRATION.

7-8. Statement of Problem and Preliminary Design Information .

7-9. Integrator System Operation .
7-10. Unit Operation . .
7-11. Over-all System Operatlon .
7-12. Summary . R

PART II. INSTRUMENT SERVOMECHANISMS

. 116
. 118
. 118

. 120
. 120
. 122
. 126

. 129

. 129
. 131

. 136
. 136
. 138
. 143
. 144
. 149

. 157

. 158
. 159
. 160
. 160
. 165

. 172
. 172

. 173

. 173
. 177
. 179
. 185
. 188
. 189

. 190

. 190
. 194
. 201
. 211
. 212

Cuar. 8. INTRODUCTION AND SUMMARY OF DESIGN PROCEDURE 215

INTRODUCTION e
8-1. General Principles of Servomechanisms,
8-2. TUsecs of Servos.

. 215

. 215
. 217

(X



CONTENTS

8.3. Definitions of Terms and Concepts. . . . . . . . . .. . ..
84. Plan and Scopeof Part IX. . . . . . . . . . . . . . ...

DEsigN TECHNIQUES . . . . . . . . « . . . . ..

8.5. Preliminary Design Data . . . . . . . . P
8.6. Design Procedure . .
8-7. Design of Servos by Expenmental Techmques

Cuar. 9. SERVO THEORY: INTRODUCTION AND TRANSIENT
ANALYSIS . . . . . .. . ...

INTRODUCTION . . . . . . . . . . . . .. ..

9-1. The Aims of Servo Theory . . . L
9-2, Transformation and Operational Methods ......
9.3. Transfer Functions. . . . . .

9-4. Generalized Block Diagrams and Components of Servo Systems
9-5. Interrelations among the Transfer Functions of a Servo System
9.6. Standard Types of Input Functions .

TrANSIENT METHODS . . . . . . . .

9-7. Setting up the Differential Equatxon .......

9.8. Complete Solution of the Differential Equation of the System
9-9. Short-cut Methods and Part Solutions of System Equatlon .
9-10. Summary . .

Cuar. 10. SERVO THEORY: FREQUENCY ANALYSIS . .

10-1. Introduction. . . . . . . . . . . . . .. e e
10:2. Determination of Frequency-response Data . . . . . . . ..
10-3. Graphical Plots of the Frequency Response.. . . . . . . . . .
10-4. The Interpretation of Frequency Diagrams . . . . . .
10-5. Operations on Frequency Diagrams . .

Cuar. 11. SERVO THEORY: EVALUATION AND CORRECTION OF
SYSTEM PERFORMANCE AND SPECIAL PROBLEMS . . . . . . . .

EvaLvaTioN oF SystemM PERFORMANCE . . . . . . . .

11-1. Response Curves. . . . . . . . . e
11-2. Specifications for a Set of Performance Propertles ......
11.3. Unitary Figures of Merit .

CORRECTION OF SERVO-SYSTEM PERFORMANCE. . . . . . . .

11-4. Derivative Error Controller (Phase Advance) . . . . . .
11-5. Derivative (Tachometer) Feedback. . . . . . . .

11-6. Oscillation Dampers . L

11.7.  Correction of Transient Error . . . . . . . .

11-8. Correction of Steady-state Errors .

SpeciaL ProBLEMS . . . . . R
11-9. Changes in Loop Gain . . . e
11-10. Filtering and Data Smoothmg in the Se*vo Loop .......
11.11. Nonlinearity in Servo Systems. . . . . . . .
11-12. Miscellaneous Accuracy Considerations. .

co2s |
. 225
o225 F

.. 226 F
. 230 §

. 232

. 234
. 234

. 236

. 236 F
. 239
. 258
. 265

. 266

. 266
. 267

270

.. 292
. 311

319

. 319

. 391
. 319
. 320

. 321

. 322
. 329
. 332
. 340
. 341

. 345

. 345
. 347
. 350
. 355




CONTENTS

Cuar. 12. CHOICE AND DESIGN OF COMPONENTS. . . . . . . . . 362
Data Inpur aANp OvurPUuT DEVICES. . . . . . . - 1 4
12-1. Data Input and Output Devices: Introduction. . . . . ... . 362
12:2. Synchros and Related Devices. . . . . - {
12-3. Potentiometers . . . . . . . . . . . .. . .. ... .. . 367
12.4. Condensers . . . . . . - 1t
12:5. Miscellaneous Data Input Devlces . ... ... .87
12-6. Time-derivative Data Input and Output Dev1ces ... ... .37
12:7. Nonlinear Positioning. . . . . L. 372
12-8. Single-speed vs. Multispeed Data Transmlssmn P 44
AMPLIFIERS, MODULATORS, AND Puase DETECTORS. . . . . . . . . . . 375
129. General Considerations. . . . . . . . . . . . . . . . . . .37
12-10. Amplifiers. . . . . . . JE - 1 &
12-11. Modulators. The Use of Modulators in Servos L. .. ... 378
12-12. Phase Detectors. . . . . . . . . . . . . . . . . . .. . .38
Motors AND OTHER PoweEr DEviceEs. . . . . ... . . . . . . . . .38
12 13. Motors . . . O 1. 1
12-14. Magnetic Clutches L - 10 1
12:15. Hydraulic and Pneumatic Devxces - 1
12-16. Control of D-¢ Motors . . . . . . . . . . . . . . . . . . .400
12-17. Thyratron Control. . . . . . ... 405
12-18. Practical Thyratron Motor- control Clrcmts o413
12-19. Vacuum-tube Control of D-¢ Motors. . . . . . . . . . . . . 417
12:20. Relay Control of D-¢ Motors . . . . . . . . . . . . . . . . 427
12-21. Controlled Generators . . . . o .. 436
12.22. Vacuum-tube Control of A-c Motors L L. 437
12-23. Alternating-current Control with Saturable Reactors. ... .. 440
12:24. Relay Control of A-¢ Motors . . . . . . . . . . . . . . . 445
12-25. Step, or Impulse, Motors . . . . . TR 449
Cuar. 13. EXPERIMENTAL TECHNIQUES. . . . . . . . . . . . . . 451
13-1. Introduction. . . . . . . . . O 19
COoMPONENT TESTS . . . . . « v v« v o o o e o oo 452
13-2. Motors. . . . e e e . 452
13-3. Data Input and Output Devlces - 133
Tests oF COMPLETE SERvVO SYSTEMS. . . . . . . . . . . . . . . . . 462
13-4. Inspection Tests. . . . . . . . . . . . . . ... ... . 462
13.5. Quantitative Tests. . . . . . . . . . . . . . . . . . . . . 463
Cuar. 14. SPECIAL SERVO SYSTEMS . . . . . . . . . . . . . . . . 468
14-1. AN/APG-5 Range Follow-up Servo . . . . . . . . . . . . . 468
14-2. PPI Follow-up Servo. .. . . . . . . . . . . . . .. ... 4N
14:3. Resolver Servo. . . . . . . . . . . . . .. R . . 475
14-4. Velocity Servos . . . L L o .. . 480
14-5. Examples of Velocity 5( rvos. . . . . .. .. . .. .. .48



CONTENTS

PART III. VOLTAGE AND CURRENT REGULATORS

Cuap. 15. REGULATOR ELEMENTS

Crar. 16. PRACTICAL REGULATOR DESIGN . . .

Cuar. 17. DEVELOPMENT AND DESIGN . .

CHARACTERISTICS OF RaDAR TEsT EQUIPMENT

Cuar. 18. PRACTICAL RADAR TEST OSCILLOSCOPE DESIGNS.

X

15-1. Introduction. . . . . . . . .

15-2. Reference Elements .

15-3. Sampling Circuits . . . . . . . . . . .
15-4. Comparison Cireuits . . . . . . . .
15-5. Control Elements . .

16-1. Design Considerations . . .
16-2. Prediction of Performance. . . . . . . .
16-3. Regulation Using Magnetic Saturation Constant—voltage Trans—
formers. . . . . . . ..
16-4. Electromechanical Regulators
16-5. Regulated A-¢ Oscillators. .
16-6. Precision D-¢ Voltage Supplies. . . . . . . .
16-7. Laboratory Regulated D-c Supplies
16-8. Miscellaneous D-¢ Regulators

PART 1V. PULSE TEST EQUIPMENT

17.1. Scope of Part IV. . . . . . . .
17-2. Measurement Problems. . . . .
17-3. Laboratory Equipment.

17-4. Field Equipment. . . . . . .

17-5. The Cathode-ray Oscilloscope . . .
17-6. Cathode-ray Tube Development. .
17-7. Deflection Systems. . . . . . .
17-8. Signal Channels . . . . . . . .
17-9. Auxiliary Circuits . . . . . .
17-10. Timing Oscillators . . . . . R
17-11. Delayed-pulse Generators. . . .
17.12. Video Pulse Generators. . . .

18:1. The P4 Synchroscope. . . . . . .
18-2. The Model 5 Synchroscope .
18:3. Oscilloscope TS34/AP . . .
18-4. Type 256-B A/R Range Scope
18-5. Oscilloscope TS100/AP. . . .
18-6. Model IIT Range Calibrator. . . . . .

18.7. The TS126/AP Test Oscilloscope. . . . . . . . . .
18.8. Direct-coupled Oscilloscope for Potentiometer Tnstmg o
18:9. The TRE General-purpose Monitor .

18-10. Other Radar Oscilloscopes.

18-11. Auxiliary Circuits . . . .

18-12. References .

.. 493
. 494
. 507
. 5811
. 519

. 523
. 523

528

. 535
. . b4l
. 546
. 548
. . b56
. 567

. 573

. 573
. . 574
. 575
. 576

. 576

. 576
. 577
. 578
. 583
. 587
. 588
. 591
. 593

. 594

. 595
. 602
. 611
. 617
. 626
. 635
. 641

. 652
. 657
. 658
. 663




CONTENTS

PART V
Cuar. 19. THE DESIGN AND CONSTRUCTION OF ELECTRONIC
APPARATUS . . . . . . . . . L. . 667
19-1. Design Specifications. . . . . . . . . . . . . . . . . . . . 668
19-2. Use of Specifications . . . . . . .. . . . . . .67
19-3. Fundamentals of Temperature-rise \ndl\ms N 1+
19-4. Lightweight Apparatus. . . . . . . . . . . . . . . . . . . 679
19-5. Minimum-weight Design . . . . . . . . . . . . . . . . . . 680
19-6. The Design Process . . . . ... . . . . 682
19-7. Construction Practice for Laboratorv Equ1pment ... . . . . 0688
19-8. Construction Practice for Commercial Equipment . . . . . . . 692
19-9. Mechanical Assemblies in Flectronic Apparatus = . . . . . . . 698
19-10. Lightweight Construction. . . I (0 V)
19-11. Lightweight Mechanical Assembhes e ... 704






PART 1

ELECTRONIC ANALOGUE
COMPUTERS






CHAPTER 1
INTRODUCTION

By 1. A. GreENwoOD, JR.

1.1. General Comments on Computers.—Important parts of the
technology that man is developing are the understanding of relationships
as formalized in the science of mathematics and the application of the
techniques of this science. In recent years considerable progress has
been made in the development of devices that aid directly in the applica-
tion of mathematical techniques. One class of such devices is known as
“computers,” also referred to as “‘calculating machines,” “calculators,”
ete.

A computer may be defined as a device that performs mathematical
operations on input data to yield new and generally more useful results.
The abacus, for example, is a simple kind of manually operated computer
that has been used for centuries by the Chinese and others as an adding
machine. The input data of this device are the separate numbers that
are entered by sliding beads according to definite rules. If this manipula-
tion is done properly, the mathematical operation of addition of numbers
is performed, yielding the total in the form of numbers represented hy
bead positions. Computers today range in complexity from devices as
simple as the abacus to machines filling large rooms with many thousands
of intricate parts and capable of solving rapidly problems of a very high
order of complexity or capable of solving simpler problems in large quanti-
ties with considerable economic savings as compared with other less
mechanized methods of calculations.

Applications of Computers.—The Radiation Laboratory has been
concerned with computers because of the important and intimate rela-
tionship of computers and military radars. Computers have been used
as integral parts of systems built around radar for such applications as
blind bombing, navigation, control of gunfire, radar trainers, etc.! Pos-

! The unique characteristics of radar have usually made it necessary or at least
desirable to use special computers designed to use the radar information to fullest
advantage. For example, early ship-to-ship fire-control computers were designed to
take full advantage of accurate optical azimuth data but to accept poor range data;
fire-control radar, with its excellent range accuracy but only fair azimuth accuracy
required completely different computers for maximum effectiveness. Radars are slso
modified for integration with computers. For example, the LAB (low-altitude bomb-
gy radar and computer equipment that achicved such spectacular results against
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sible uses for computers are both numerous and of far-reaching technical
consequence. Vannevar Bush has remarked! that ‘“ the world has arrived
at an age of cheap complex gadgets of great reliability,” citing 30-cent
radio tubes as examples. This quotation, the authors believe, may well
be used to summarize the present or near-future status of the computer
field. Of course, ‘‘cheap’’ is here understood to mean cheap in compari-
son with savings effected or in relation to value of goods produced with
the assistance of computers. Among the possible uses of computers are
numerical solution of scientific and engineering problems,? industrial
process control computations, conduct of purely mathematical research,
transformations of data in physical measurements, and, in general, sub-
stitution of mechanization for specialized human operations. The process
control field appears to be particularly fertile and is relatively unex-
ploited from the standpoint of equipment whose operation is based on
more than just simple linear functions of a very limited number of meas-
ured variables. The design of large aircraft is providing an expanding
field for computer applications, for lightweight devices improving the
efficiency and safety of aircraft operation are of great economic importance.
It is anticipated that computers will be developed and used in large air-
craft for automatic solutions of all or major parts of the following prob-
lems: navigation, air-traffic control, engine efficiency, ete.

A word regarding the more distant future may be of interest, even if
risky. Without exceeding a reasonable extrapolation of known tech-
niques, one may speculate on the possibilities of desk-size machines con-
taining the equivalent of whole libraries and capable of high-speed selection
and cross indexing,® machines that perform simple associative rea-
soning, machines that type spoken words, machines that translate one
language into another, etc. Even that favorite of the cartoonists, the
“mechanical man’’ that can beat its human master in a chess game, can-
not be said to be an impossibility.

Reasons for Using Computers.—Computers are presently used and can
be used for a variety of reasons. In some cases the problems that must
be solved are too difficult for simple methods of numerical solution. A
differential analyzer,* for example, is capable of giving numerical solu-

Japanese shipping in the recent war used a special bombardier’s radar indicator with
computer-controlled sweeps and electronic markers.

1 V. Bush, “As We May Think,” Atlantic Monthly, 178, No. 7, 101-108, July 1945.

2 An example chosen at random from many such devices described in the literature
is C. E. Berry, et al., “A Computer for Solving Linear Simultaneous Equations,”
Jour. Applied Phys., 11, 262-272, April 1946.

3 The “memex” of V. Bush’s stimulating article, loc. cit.

4 SBee, for instance, V. Bush and 8. H. Caldwell, “A New Type of Differential
Analyser.” Jour. Franklin Inst., 340, 255, October 1945.
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tions of differential equation problems that are impractical (usually for
economic reasons) to solve by other means. This valuable research tool
has stimulated activity in the mathematical fields where ordinary proe-
esses of analysis are severely limited. As Bush and Caldwell point out,
the way is open for the creation and practical use of new functions defined
only by their differential equations. To this should be added functions
defined only by implicit equations.! Certain mathematical processes,
such as adding long columns of figures, may be simple but very tedious;
devices such as adding machines are useful for handling this type of work.
Sometimes a very rapid solution of an involved problem is required.
For example, compilation of a ballistic table by unmechanized computing
methods might take man-years to complete; with the right computing
equipment the entire job can be done with a few man-days or man-weeks.
Computers are often used merely to simplify complicated procedures or to
present data in a more convenient form. One important advantage of
many computers—and particularly so of those which this book will
emphasize—is that they will do their work unattended or with little
manual supervision. For example, the computing mechanisms associ-
ated with radar or visual bombsights will do a large part of the ““thinking”’
that is needed to solve the somewhat involved geometry of the bombing
problem. The ability of computers to work unattended is of utmost
importance in the field of automatic process control, where it may be
necessary to perform certain mathematical operations on input data in
order to arrive at the correct information for actuating the control mem-
ber of the system. The ability of computers to work unattended is a
major economic consideration in this field.

1.2, Types of Computers and Computer Elements.—It is of interest
to classify the various types of computers and computer elements. Such
a classification will be referred to in the following section where the scope
of this treatment will be discussed. Four useful types of classification
are

1. Automatic vs. manually operated.

2. Electronic and electromechanical vs. purely mechanical.
3. Digital vs. analogue.

4. Single-purpose vs. multipurpose.

Manual vs. Automatic Computers.—The abacus has already been listed
as a simple example of a manually operated computer, without definition.
A “manually operated computer’’ is defined as one in which most of the

1Tt is true that such equations can usually be written as differential equations and
solved as such on a differential analyzer. This particular type of mathematical
rearrangement, however, is not essential to the design of computers solving implicit
equations hy the techniques to be described; hence the distinction.
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manipulation of data is done by manual operation, while an ““automatic
computer’’ is one in which most of the manipulation of data is done with-
out manual assistance other than entering the input data and receiving
the output data. Thus, a simple slide rule is a manually operated com-
puter. If a series of slide rules were connected together by motors and
other gadgetry to perform something more than the simple operations
that may be done with a slide rule by itself, then there would result an
example of an automatic computer. The distinction between the two
computer types, although admittedly not clear-cut, does serve a useful
purpose in roughly subdividing the general field of computing mecha-
nisms. As will be explained below, the contents of Part 1 of this
volume are limited principally to automatic computers and computer
clements.

Electronic and Electromechanical vs. Purely Mechanical Computer
Elements—This distinction is of interest, for it means a major difference
in the background and facilities required to design and produce these two
types of computer elements. There are fairly distinet characteristics
that can be associated with each type of element; these will be discussed
in some detail in Sec. 2-11. The difference between these two types of
computer elements is also important in connection with the emphasis of
this treatment, as discussed in Sec. 1-3.

Digital vs. Analogue Computers—In considering the subject of com-
puters, one is immediately concerned with the concept of quantity and
magnitude. There are three ideas associated with this concept: (1) the
thing described, that is, length, voltage, ete.; (2) the unit, that is, feet,
volts, etc.; and (3) the number of units, that is, 10 ft., 12 volts, etc.
Quantity in a strict mathematical sense is a very abstract concept. Ina
computer the representation of quantity must be specific. In the way
that it is specific, computers may be divided into two categories: those
which deal with continuously variable physical magnitudes and those
which deal with magnitudes expressed as a number of digits. The first
type will be referred to as ‘‘analogue computers’’; the second type will
be referred to as ““digital computers.” Thus, the simple computer shown
in Fig. 1-1 is an example of an analogue computer. The standard com-
mercial desk calculating machine may be classified as a digital computer.
Some of the newer high-speed electronic and electromechanical computers
operate on the digital principle and will be discussed briefly below and in
following chapters.

A fundamental distinction between digital and analogue computers
is the fact that in digital computers the accuracy is limited only by the
number of significant figures provided for whereas in analogue computers
aceuracy is limited by the percentage errors of the devices used multiplied
by the full ranges of the rariables that they represent. This difference is so
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fundamental and so important that it can scarcely be emphasized enough.
A decision between the two radically different philosophies of design is
the first step that is made in selecting or designing a computer for a
specific purpose. If four or five or more significant figures are required
in computations, analogue computers are usually simply not good enough
and digital devices must be used. Where two, three, or four significant
figures are all that are required, analogue E
computers may be far simpler than digital
computers, and it would be foolish to pay

in complexity for the digital computers’ 2 . 2{;
unused ability to handle more significant

figures.

Analogue computers represent a gen-
eral method that has numerous applica- Null meter
tions, namely, the use of one physical
system as a model for another system,
more difficult to construct or measure, that
obeys equations of the same form. FEx- L
amples of applications of the general Fic. 1.1.—Simple bridge computer
method that might be called analogue forz = a/y.
computers but are generally not thought of as such are the use of elec-
trolytic troughs to represent certain systems involving functions of a
complex variable and the use of equivalent electrical networks to
represent complicated differential equations.!

Single-purpose vs. Mullipurpose Elements—The type of computer
generally used in bombsights, fire-control equipment, process control,
ete., consists of a group of elements each of which performs a single
mathematical operation, the data passing through each element only
once. The presence of feedback loops is not considered an exception to
this statement. Such elements may be called *‘ single-purpose elements.”’
Computers are also built on a different and very interesting philosophy.
This type of computer involves a relatively small number of simple
adding, subtracting, and memorizing elements. Data are switched
through these elements in a complicated fashion by a eontrol or program-
ming center, which is usually operated by a coded tape or its equivalent.
This concept has been used in many of the interesting high-speed digital
computers that have been developed for the numerical solution of
complex mathematical problems as aids to scientific and engineering
researches. Among the important examples of this type of computer
are the IBM-Harvard University electrically controlled mechanical com-

-
—

1 G. Kron, “Numerical Solutions of Ordinary and Partial Differential Equations
by Means of Equivalent Circuits,” Jour. Applied Phys., 16, 172-186, March 1945.
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puter! and the electronic computers developed at the University of
Pennsylvania.?

When several sets of data are sent through a multipurpose element, it
is necessary to keep them separated. Coding for identification of data
may be accomplished

1. Through position in time of pulses relative to a timing pulse.

2. Through amplitude, width, or interval coding of pulses or by other
wave-shape characteristics.

3. Through frequency differences.

Advantages of multipurpose computers at present are flexibility and,
in the case of electronic types, extremely high speed. Electronic or elec-
tromechanical computers using multipurpose techniques are usually
digital devices based on the binary system of numbers rather than the
decimal system, since only the dizits 0 and 1 are used in this system and
can conveniently be represented by two states of a vacuum tube, namely,
conducting and nonconducting, by the absence or presence of a pulse in
a given time interval, or by the two positions of a relay armature. In
pulse digital computers, numbers are thus represented in the binary
system by a sequence of pulses and spaces, the pulses corresponding to
1’s and the spaces corresponding to zeros. Numbers so represented may
be “remembered”’ by injecting them into a system having a transmission
delay greater than the period of the pulse sequence, the output of such
a delay being amplified, resynchronized with a master timing standard,
and reinjected to circulate in such closed cycles indefinitely until called
up for use. A variety of other memory methods are used or under
investigation.

The field of electronic pulse digital computers is one of great research
interest at this time, for the combination of high-speed operation and
ability to retain as many significant figures as desired offers exciting
potentialities. It appears possible to build electronic pulse digital com-
puters that operate on continuously varying data but in which the neces-
sary computations are carried out repeatedly at closely spaced time
intervals. This would give outputs equivalent for most purposes to those
of continuous (analogue) computers, but with the advantages of speed and
the extra significant figures that can be carried as compared with analogue
devices. More is said about speed of computation in Sec. 1-4.

1.3. Limitations of Scope and Plan of Part 1.—The treatment of this
book is of necessity somewhat limited in scope. Limitations of time and
personnel! have made it seem desirable to concentrate the emphasis of
this treatment on devices on which the Radiation Laboratory had worked
or ones with which it was familiar. An attempt has been made, however,

1 4 Manual of Operation for the Automatic Sequence Contralled Calculator, Harvard

University Press, 1946.
2 See footnotes, Sec. 3-8, for references.
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at least to mention other important devices, with references, so that the
interested reader may pursue further the study of devices not discussed
in detail.

The majority of the computers that Part I of this volume treats may
be classified as automatic, electronic or electromechanical, analogue com-
puters, with single-purpose elements. To the extent possible, infor-
mation on mechanical elements has been included but is not complete
or detailed. Excluded are such important aids to mathematical com-
putation as the ordinary commercial desk calculating machine (a mechan-
ical digital computer).

Following this introductory chapter will be found discussions on over-
all design procedure, important design principles, and a discussion of
various representations of quantities and their characteristics. Other
chapters will treat isolated operations, groups of operations, and complete
computers.

Two goals have been set for Part I: a listing and explanation of a
number of devices and methods and a systemization of the analogue
computer field, including a scheme for “cataloguing’’ computer elements
and methods, and a summary of the basic principles underlying their
logical selection and combination.

1.4. Speed of Computations.—Von Neumann! points out that for a
typical binary system multiplication problem carrying eight significant
decimal digits some 1000 to 1500 steps are required. Using relays with
reaction times of 5 msec (a lower limit for available relays) roughly 5 to
8 sec per eight decimal digit multiplication would be required. The
same multiplication on a fast modern desk computing machine at present
takes 10 sec, and for standard International Business Machines multi-
pliers, the time is 6 sec. Some time may be saved in such a process at
the expense of complexity of equipment. With vacuum tubes, a reac-
tion time of 1 usec now may be readily achieved. With this reaction
time, the multiplication involving 1000 to 1500 steps would require only
1 to 13 msec, far less than any nonvacuum-tube device.? Though this
discussion applies directly to digital computers, the details of which are
outside the -scope of this book, the general conclusion that electronic
devices can be much faster than electromechanical or mechanical devices
nevertheless applies to most computing problems. However, extreme
speed is often not of great importance; and for a wide variety of computer
purposes, the speeds available with electromechanical and mechanical
devices are completely adequate. For the remaining cases where very

1J. Von Neumann, “First Draft of a Report on the EDVAC,” Moore School,
University of Pennsylvania. Sce also other references given in footnotes of Sec. 3-8.

2 D. R. Hartree, “The ENIAC, An Electronic Calculating Machine,” Nature
(London), 167, 527, Apr. 20, 1946, states that the multiplication of two numbers of
10 decimal digits takes “a few milliseconds” with these methods.
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high speeds are required, the all-electronic devices are fortunately becom-
ing available. In most of the computing devices with which Part I will
be concerned, methods of computation are arranged so that only two to
four significant figures are retained, and the isolated operations described
have minimum reaction times ranging from a fraction of 2 millisecond to a
few seconds.

1.5. The Computer Problem.—The computer design problem as it
generally exists may be stated as follows: Given input data of a specified
nature, range, speed, etc., design a device that will operate on these data
to give output data of a specified nature, range, speed, etc., and that will
operate at a specified accuracy under specified service conditions.

Usually one is faced with the problem of designing a specific computer
for a specific task, and consideration of flexibility will give way to othe:
considerations such as cost, weight, complexity, etc. In many computers
just the opposite is true: examples are the MIT differential analyzer,
the Harvard computer, the University of Pennsylvania vacuum-tube
computers, and some commercial computing devices. Most of the
devices with which the Radiation Laboratory has been concerned are
classed as specialized computers, although in almost every case an attempt
was made to use standard components or components suitable for
standardization.

Throughout this book there will be frequent discussions of design
factors applying to the design of some special device. In the interests
of compactness, a master list of design factors has been prepared and
will be found in Chap. 19. When practical, this list will be referred to
for the majority of the design factors applying to any specific device,
leaving for detailed discussion only those factors of special importance
to the specific device. In applying the master design-factor list to any
specific device, it will, of course, be found that many factors do not apply.
These are generally obvious, however, and it is felt that the advantages
of a reasonably complete design-factor ‘‘check list’”’ will be of sufficient
practical assistance to the designer to outweigh such lack of universality.

1.6. Summary.—Computers are defined; examples given; and uses
discussed. Four types of classifications of computers and computer
elements are mentioned: automatic vs. manual, electronic or electro-
mechanical vs. mechanical, digital vs. analogue, and single-purpose vs.
multipurpose. It is stated that the emphasis of Part I will be on auto-
matic, electronic and electromechanical, analogue, single-purpose com-
puters and computer elements. Speed of computing is mentioned, with
the conclusion that where very high speeds are required, electronic
coraputers should be considered but that for a very wide range of appli-
cations speeds available with electromechanical computers are adequate.
The usual problem of computer design is mentioned.



CHAPTER 2
COMPUTER DESIGN

By I. A. GREENwOOD, JR.,, AND D. MacRaEg, Jr.!

2-1. Introduction.—The usual problem with which the computer
designer is faced is discussed in Sec. 1-5. This chapter will summarize a
systematic procedure for designing computers. Although this procedure
is arbitrary and subject to the readers’ revisions to suit the readers’ needs
and temperament, it has nevertheless been found to be both useful and
expeditious in the long run. This procedure summary is followed by a
presentation of some of the more important basic principles and techniques
used in computers. The chapter concludes with a discussion of the sub-
ject of representation of quantity and includes a brief comparison of the
characteristics of some of the more important types of data representa-
tion used in electronic and electromechanical computers.

DESIGN PROCEDURE

2-2. Summary of a Systematic Design Procedure.—Systematic
procedure for designing electronic and electromechanical computers is
presented in the present section. Reference is made to Chap. 7 wherein
a sample computer design is discussed in terms of this design procedure.
Reference is also made to Chap. 19, in which the subject of electronic
engineering is discussed from a more general standpoint.

Preliminary Information.—In starting the design of a computer, the
designer must have specific information as to what is to be computed.
This statement sounds trite, yet it contains an important truth. The
translation of an operational need, often vague, into computer specifica-
tions may be a difficult task, requiring a high caliber of professional
judgment. It should preferably be done by or in close consultation with
the person or team that is charged with the computer design. It fre-
quently turns out that over-all specifications need revision after a design
has been carried along. It is profitable for the designer always to keep
in mind the operational need as well as the final over-all specifications.
Included in the specifications should be such things as the characteristics
of the inputs and outputs and a complete list of the design limitations

! Section 2-5 is by I. A. Greenwood, Jr., and D. MacRae, Jr. The rest of Chap. 2

by 1. A. Greenwood, Jr.
11



12 COMPUTER DESIGN [Sec. 2-2

and operating conditions that must be met (e.g., cost, design time, tem-
perature, vibration, etc.). A comprehensive check list of design factors
will be found in Chap. 19. In starting a design, a designer will want
to be familiar with a variety of methods and devices for performing iso-
lated mathematical operations and groups of operations and the basic
principles and techniques for bringing together these methods and devices
into a high-quality computer.

At this point, the designer will wish to draw an over-all functional
block diagram and to formulate the fundamental computer equations.
It is worth while to do this very carefully. Some of the methods of
Sec. 2:3 may be found helpful in this process.

Creating a Block Diagram.—Having the over-all specification, the
over-all functional block diagram, and the computer equations, the
designer is next ready to create a detailed block diagram. The creation
of a block diagram is an experimental technique in which the designer
tries fitting together on paper the various blocks at his disposal, using
the principles of implicit and explicit functions, error cancellation, etc.,
as discussed in Sees. 2-3 to 2-4, immediately following the present sec-
tion. That combination of blocks which best satisfies the initial design
requirements and applicable engineering considerations may be accepted
as a starting block diagram. It will often be found that the best com-
puter will combine a number of types of representations of data, such
as mechanical displacements and rotations, voltages, and impedances.

Concurrently with the creation of a block diagram over-all scale
factors should be roughly determined, as they may have a great deal to
do with the choice of blocks. At this point also it is wise to investigate
those components or circuits whose performance is critical to the success
of the block diagram selected. An example of the application of this
statement is found in Chap. 7.

In selecting blocks for a block diagram, it is important to consider
both (1) the possible effects of the block being considered on other blocks
and linking devices in the complete chain of operations of the computer
and (conversely) (2) the possible effects of other blocks on the data inputs
and outputs, scale factors, accuracy, ete., on the block being considered.

Preliminary Design.—With a block diagram chosen, a preliminary
design may be made in some detail. The first step in this process is a
detailed choice of system scale factors and assignment of permissible
errors to the various blocks.

At this stage in the design it should be kept in mind that all com-
ponents which are used in the design should be procurable or capable of
being manufactured in the quantities desired. It is & common fault of
designs to carry along too far a scheme using unprocurable components.
This statement should not be interpreted as arguing against the use of
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special components where justified; however, where special components
are used, they must be suitable for production in the quantities desired.
Naturally, the smaller the quantities the more special may be the com-
ponents. Very large quantities may also justify special components.

Detailed Performance Analysis—A preliminary design having been
completed, it should be analyzed in some detail for expected performance
under all operating conditions wherever this is practical in order to make
sure that all design considerations have been met satisfactorily and
that reasonable compromises between conflicting factors have been
effected.

Detailed Design.—If this analysis turns out satisfactorily, the design
should be worked over in great detail in order to make certain that all
elements used are consistent with the design considerations. Exact
and complete specifications and tolerances for all component parts must
be determined. The design is not completed until this is done; a single
adverse characteristic of a component may require a new block diagram
to be chosen. It is the practice of some successful laboratories to
consider detailed production inspection procedures as essential parts
of the complete specifications for all components and assembled
equipments.

Construction of Model.—Either after the theoretical analysis or after
the detailed analysis of the components, a breadboard or prototype model
should be constructed. Two important functions of a model are (1) to
serve as a check on design calculations and (2) to stimulate further think-
ing. Models also provide the means for obtaining information that is
impractical to calculate. An example of such information is stray
capacitance. A working model is always useful and almost always
essential when production is being initiated.

Repetition of Steps.—It will generally be found that the entire process
must be repeated perhaps several times before a really satisfactory final
design is achieved.

Two of the most important factors in successful computer designing
are (1) getting the feel for the proper type of data representation at each
point in a chain of operations and (2) mastering the techniques of implicit
solutions by means of feedback loops. In all computer design, experience
and ingenuity assist one considerably. However, by the exercise of
only a little extra patience in the process of fitting blocks together on
paper in the creation of a block diagram and in the execution of detailed
design, the reader new to the field should be able to design satisfactory
compuiers for most technical purposes. The authors maintain that com-
puter design can and should become a working tool of the modern engi-
neer and scientist rather than a ‘“‘black art” available only to a few
initiates.
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BASIC PRINCIPLES AND TECHNIQUES!

2-3. Rearrangement of Computer Equations.—Much work can be
saved and devices of less precision used in the average computer if full
advantage is taken of the simplification in instrumentation that may be
effected by juggling the fundamental computer equations. While all
the methods of mathematics are possible sources for these simplifying
steps, a few of the more important methods can be listed specifically.

Among these is the principle that a problem may often best be solved
in terms of increments from a chosen set of values rather than in terms of
the full magnitude of the quantities involved. Thus, for example, in a
computer converting Loran data to rectangular coordinate data covering a
small region, it would be desirable to work in terms of distances from an
origin at the center of the region. This has the advantage that devices
with fixed percentage errors are operating on quantities whose magnitudes
are relatively small.

A frequently useful method of simplification is that of zero shifting.
Where both positive and negative values of data must be handled, a
simple renumbering (shift of zero) will allow the same data to be repre-
sented on a data scale that does not include negative values. There are,
obviously, many cases where this procedure will not work. Addition of
constants (shift of zero) has been used in multiplying devices to avoid
operating with zero inputs to the devices, even though the data go to or
through zero. A discussion of this point is given by Fry.!

A common mathematical procedure of considerable use in computer
design is that of series expansions and approximation. This method is
particularly helpful when complicated nonlinear functions must be repre-
sented. The possibility of series expansions or approximations should
at least be considered carefully when such functions are encountered.

For problems in which a point is represented by simple coordinates,
rectangular, cylindrical, and spherical coordinates should be considered,
and the most appropriate selected. In almost every case one of the
three will be found to have a distinct advantage over the others. The two
computers of Chap. 7 represent examples of position representation in
rectangular and spherical coordinates, respectively. Other types of

! General references on computers include the following: F. J. Murray, The Theory
of Mathematical Machines (good bibliography), Kings Crown Press, New York, 1947;
M. Fry, ‘“Designing Computers,” reprinted from Machine Design, August 1945 to
February 1946, Penton, Cleveland, 1946; H. Ziebolz, Analysis and Design of Translator
Chains, Askania Regulator Co., Chicago, 1946; A. C. Blaschke, “‘Solution of Differen-
tial Equations by Mechanical and Electromechanical Means,”” AAF Eng. Div, Report
TSEPE-673-4, 1946, available as Dept. Commerce No. PB 10298 (bibliography has
108 listings); and V. Bush, and 8. H. Caldwell, “A New Type of Differential Analy-
ser,” Jour. Franklin Inst., 240, 255, October 1945,
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toordinate systems may also be considered, of course, but rectangular,
eylindrical, and spherical coordinates are by far the most common types
used in computers.

In gencrating nonlincar functions, a frequently used technique involves
the generation of an approximation to the desired function by some very
simple and reliable device together with a nonlinear element (such as a
cam) supplving only the correction to the approximation rather than the
entire quantity being generated. Cams are also used in this manner to
remove errors when the simple device referred to above generates the
function desired, but with insufficient accuracy or with errors introduced
by external conditions. A good example of this type of cam correction
of errors is found in the Bendix-Pioneer Flux Gate Compass Master
Indicator. Another simplification technique, that of implicit functions,
is treated separately in Sec. 2-5. It is probably the most important of
the methods available to the computer designer.

2-4. Explicit Analogue Computers.—As has been mentioned in the
previous chapter, analogue computers operate by identifying variables in
one physical system with those of a different physical system obeying
equations of the same form but usually with different constants. It is
this simple and fairly obvious principle which forms the basis for most of
the computers that are discussed in the present part of this volume.
When the fundamental equations cannot be written simply or instru-
mented readily, implicit analogue techniques may be required. These
are discussed in the following section.

2-6. Implicit Function Techniques.—Implicit function techniques
are among the most important tricks used in computer design. Through
the use of the implicit function techniques described in this section and
elsewhere, considerable simplifications and increased accuracy are easily
achieved in many typical computers.

TaBLE 2-1. —CORREsSPONDING IMpLICIT AND ExpriciT EQUATIONS

1 Explicit Implicit
Subtraction. ... .. e z=zz—ylzty =12
T
Division..... . .. e Z=ZI yz =z
Integration.... ........................ .. .. z=[ydt Z—f=y
Squareroot......... ... ... .. ... ... . z=+/7 |2t==z
|

There are numerous computations for which direct physical analogues
are inconvenient, insufficiently accurate, or not available but for which
another method of solution is possible. This other method is similar to
the mathematical operation of computing the function z = g(z,y) from
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the defining relation f(z,y,2) = 0; that is, of deriving an explicit function
from the corresponding implicit function. It is especially convenient
when the function f(z,y,2) has a relatively simple instrumentation and
the function z(z,y) is diffcult to instrument. It is used, for example, tc
perform subtraction by means of addition, division by means of multi-
plication, integration by means of differentiation, and the extraction of
square roots by means of squaring. The explicit and implicit equations
corresponding to these operations

vy are given in Table 2-1.
* * z Outout The simplest method in princi-
2 fley2) [ 4 | An)D'iier ©u puz) ple of producing the function z(x,y)
’—’-‘ gain =4 from the equation f (z,y,2) = Ois
to use a high-gain amplifier with

Fia. 2-1.—S8olution of implicit function using

feedback high-gain amplifier. feedback as shown in Fig. 2L

The variables x, y, and z are fed
into a device producing the function f(z,y,z); the output is amplified by
a factor A and fed back as the variable z. The result, if the system
assumes a stable state, is that the device solves the equation

feya) =5 (1)
If A is sufficiently high,! the device produces values of z such that

f(z,y,2) = 0. (2

The quantity z/4 may be called an ““error signal.”” Thus there is an
inherent error Az in z which may be expressed by

of _Z
(52);=0 Az = AI

or 3)
z

. -
4 (52)#0

Consider, for example, the case of division, This may be accomplished
either by a device that divides directly or by a device that multiplies,
used with feedback. In performing any other operation a similar set of
alternative methods, one with and one without feedback, is often possible.
A choice between the two alternatives is made on the basis of the usual
engineering considerations, such as accuracy, cost, availability, com-
plexity, weight, size, etc. A schematic diagram and a possible instru-

tIn Vol. 18, design procedures are given that are suitable for stabilizing high-gain
amplifiers.
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mentation for division using multiplication and feedback are shown in
Fig. 2-2. The input y multiplies the input z. The product yz is then
subtracted from the input x. Thus in this case f(z,y,2) is  — yz, and

-] ]

Inputs '

i e’ |
Multiplying yz Subtracting
‘ device device ‘
Output z |
| z-yz=€=0
Amplifier Feedback pat"

Fi1a. 2:2.—Block diagram of computer for z = z/y using yz = z.

€2

P

i
€y ---- Amplifier > €,

R
T

Fia. 2.3.—Integrating circuit.

Network 1

el—'—Lﬂ (p) = Amplifier—l—-——a
Network 2

F16. 2-4.—Feedback circuit for general operational equation.

the explicit funetion produced by equating this to zerois z = z/y. The
inherent error is

4 z —T
Az =2 _—_* T 4
2T 0 T A=y T Ay @
0z

An application of this method to the solution of the equation

y*+siny4+x=0
is discussed in Sec. 6-1.

This method may also be used for producing the negative of a voltage
(Chap. 3) or for integration with respect to time (Chap. 4). An inte-
grator circuit is shown in Fig. 2-3. There is again an inherent error due
to finite gain, best expressed (Chap. 4) in a different way from the above
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expression. The same method can be used with more complicated
integro-differential functions. The general circuit of Fig. 2:4 produces
an approximate solution of the equation

fi(p)£(e)) + fa(p)L(es) = 0,

where fi(p) = transform expression for admittance of Network 1,
f2(p) = transform expression for admittance of Network 2,
£ = the Laplace transformation.! '

In high-gain feedback circuits, special care must be given to the pre-
vention of oscillations. The higher the gain the more difficult this
becomes. The general procedure is to design networks that give the
desired shape to the loop gain and phase-shift characteristics.? The
design procedure in this respect is similar to that for servos as discussed
in Chaps. 9 to 11.

Feedback with Integration.—Where feedback is used in implicit solu-
tions, it is often of value to modify the error signal by other than straight
amplification. Shaping loop gain and phase characteristics to achieve
stability is one such modification that has already been mentioned.
A form of such modification is integration of the error signal. If, for
example, the error signal is used to operate a simple servomechanism
whose motor forms part of the complete feedback loop and whose speed
i1s proportional to the error signal, then integration of the error signal
with respect to time is achieved. This has the useful effect of eliminating
(in practice, of reducing) steady-state position errors. This subject is
discussed in more detail in connection with servo theory in Chaps. 9 to
11 and by Hall.?

Additional integrations or differentiations may also be used to take
fullest advantage of the data available rather than merely to achieve
stability when high gain is used. The stability modifications must, of
course, be made after the integration, etc., modifications have been
seiected.

Feedback without High Gain.—For some computations it is convenient
to use a circuit that is somewhat like that of Fig. 2-1 except that a high-
gain amplifier is not present. Such a circuit or device is shown sche-
matically in Fig. 2-5. The equation that it solves is

fzy2) = 2. 6

1 8ee Chaps. 9 to 11. In these chapters, the symbol s rather than p is used to
represent the complex variable.

* H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York, 1945; and Vol. 18, Radiation Laboratory Series.

“ A, C. Hall, Analysis and Synthesis of Linear Servomechanisms, Technology Press,
Massachusetts Institute »f Technology, 1943.
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The conditions under which this method may be used are that a
solution exists and that the desired output z may be expressed as a func-
tion of z, y, and z, this expression
being of a form suitable for instru- | 2 - Output
mentation with available tech-

niques. If f(x,y,2) contains an z
additive term z with unity coeffici- fzy2) <

ent and its computation involves

one or more unilateral elements, T

then the feedback of z to the point z ¥

in the f(CL‘ Yy 2) computations where Fig. 2:5.—Feedback circuit without high-
'Y i lifier.

it is added to the other terms must el ampiber

be unilateral; in other cases it may be bilateral. For good operation and

high accuracy, 9f/dz should be much larger or much smaller than unity.

The equation

e+3z+y+2x=0 (6)
is readily changed to either of the following forms,
e+ 4z+y+ 2z =2
e +y+2z (7

-3 =z

and may be used as such provided the left-hand sides of the expressions
may be instrumented. The equation

c+y+2c =0 (8)
may be changed to the proper form by adding a z to each side, becoming
et+y+2r+z=2 (9)

which requires unilateral z feedback if any of the operations on the left
hand side are unilateral. Equation (7) can also be rearranged to such
forms as

In(—2x —y — 32) = 2, (10)
which may be used provided the left-hand side of the expression can be
instrumented.

A comparison of the two types of feedback connection is of interest.
When put into the proper form for use in a feedback loop without high
gain, the resulting equation may be more difficult, as difficult, or easier
to instrument than the same equation in optimum form for the more
conventional feedback with amplification. The comparative difficulty
of instrumentation is always an important factor in the choice of a
method. When appreciable time constants are associated with the
circuits or devices used, the feedback amplifier method assures a faster
transient response than the no-amplifier method. TUsuallv when the
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no-feedback amplifier method is used, some means is needed of compen-
sating for decrease of scale factor due to the instrumentation of the
various terms of the left-hand side of the equation of the form of Eq. (5).
Where electronic circuits are concerned, this may require a stable low-
gain amplifier, whereas in the feedback amplifier method a high-gain
amplifier with little restriction on gain variations will suffice. For these
reasons, a choice between the two alternative amplifiers may often favor
the latter, although the former is simpler. In mechanical systems,
mechanical amplifications are similarly to be considered, although here
the problem of gain stability is not so serious as in the case of electronic
amplifiers.

Interchange of Variables—There are several ways in which the inverse
of a function can be produced without the use of feedback. Probably
the simplest is possible in the case of a mechanical function-producing
device having two shafts that may be used alternately as input and
output. One device of this sort is the combination of a cone and a
cylinder! by a wire that winds onto one as it unwinds from the other;
this device can be used to produce either squares or square roots. The
interchange of mechanical inputs and outputs is limited by the nature
of the function produced; if in some region the derivative of output with
respect to input is nearly zero, the variables cannot be interchanged in
that region.

Another type of interchange of variables occurs in the case of some
two-terminal electrical devices with special voltage-current character-
istics. Ordinarily the voltage is considered to be the independent
variable and current the dependent variable, as in the case of diodes,
triodes, and crystals. If a current generator rather than a voltage
generator is used, however, the inverse function may be produced. This
procedure is used in the logarithmic multiplying device of Chap. 5, in
which the exponential grid-current characteristic of a triode is used with
a high grid resistor to produce the inverse function, a logarithm.

A third method of interchanging variables finds particular application
to computation with periodic waveforms. If a repeated voltage wave-
form is compared by means of an amplitude comparison device (Vol.
19, Chap. 9) with an input voltage, a pulse or other indication of the
time of coincidence may be obtained. If the original waveform is a
given function of time, this same function of a slowly varying input
voltage may be obtained by time selection (Vol. 19, Chap. 10). Thus,
for example, a parabolic waveform can be used to produce either squares
or square roots. .

The principle of repeated functions with amplitude comparison to
compute inverse functions or with time selection to obtain direct func-

1 Sec. 5-11.
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tions may be applicable in a number of ways to a wide range of problems,
although its use is not widespread. Its principal disadvantage, apart
from considerations such as complexity, is that of the time required for
the repetition period of the repeated function. An interesting applica-
tion of this principle is found in the Keinath sweep balance multiple-
data recorder.}

Stability in Implicit-function Loops.—Some general observations may
be made concerning the realizability of solutions in loops such as that
of Fig. 2-1. It is necessary that in the case of constant input the polarity
of feedback be such as to produce equilibrium at the desired solution.
This condition is equivalent to stating that the polarity of the amplifier
must have the opposite sign from df/9z in the desired region. If the
function f(z,y,2), assuined to be continuous, has multiple real roots for
z =z and y = ¥y, some of these roots may have 3f/3y of the proper
polarity to make the roots stable and others may not. An example of
this case is shown in Fig. 2-6. The arrows indicate the direction in
which the system will go; the central root may be considered a position
of unstable equilibrium. If the
polarity of feedback is reversed,
the formerly stable roots will be-
come unstable, and vice versa. ;
When the system is turned on, its )
behavior will depend on the polar- />\/' Y
ity of feedback, on the region in !
which the system was when turned / * Unstable root
on, and on the changes that take
place during warm-up. If the
polarity of feedback is such as Fic. 2-6.—8table and unstable roots.
to make the outermost roots unstable, the system may osciliate at the
limits of its region of operation. In order to examine stable inner roots
it is necessary either to restrict the region of operation by modifying
the device or to force it into the region desired, where it will then assume
s stable state.

A principle that is often useful in computer design may be generalized
from the “rule of torques’ set forth by Bush and Caldwell.2 This
generalized principle may be stated as follows: Every input to every
element or “block” in a computer must be actuated by one and only one
driving source.

2-6. Tolerances and Errors.—A standard designation for errors has
been followed by the Navy for fire-control computers. According to

,-- Stable roots -,

Sy

v
1
]

)

1 G. Keinath, “The Keinath Recorder,” Instrumenis, 19, 200, April 1946.
2V, Bush and 8. H. Caldwell, “A New Type of Differential Analyser,”’ Jour.
Franklin Inst., 240, 255, October 1945.
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this designation, errors ate classified as Class A, Class B, and Class C.
Class A errors represent the deviation of the operation of the equipment
from the theoretical design operation. They include reading errors,
incorrect adjustments, errors in components, etc. Class B errors repre-
sent the mathematical approximation of the design. The sum of Class A
and Class B errors is called a Class C error and represents the accuracy
of the equipment. Class A errors when reduced to a minimum by
accurate adjustment and accurate reading, etc., represent the precision
of the equipment. Where Class B errors are required, the distinction
between these terms is a useful one. With the exception of Chap. 5,
most of the discussions of Part I do not involve Class B errors and
therefore the terms ‘‘accuracy’’ and ‘“ precision’’ are used interchangeably.

In considering the accuracy of computing equipment, the question of
calibration is encountered, particularly in the case of electronic circuits.
In order to specify completely the accuracy of an equipment, its errors
should be specified in terms of the frequency of calibration or of time
since last calibrated. The principal reason for this is that components
of all types change with time and use. The process of component drift
may be very complicated and usually involves such things as thermal
and moisture cycles, mechanical wear, creep, vacuum tube cathode
disintegration, vibration, chemical reaction, etc., but regardless of the
explanation, some drift is usually to be expected, and calibration intervals
must be chosen so that errors due to component drifts are not excessive.

The terms component tolerance and component variation are fre-
quently encountered. Tolerance is an allowable deviation as from a
specified value under fixed conditions and is used to define permissible
errors of manufacture or construction. Thus, a resistor might be partially
specified as a 100-k 5 per cent resistor, the 5 per cent being the manu-
facturing tolerance. Component variation may be defined as the change
of a component value as conditions change. Thus the 100-k 5 per cent
resistor might have a value of 103 k at 20°C and change to 104 k at
70°C. The 1-k change would be referred to as the variation in this case.

In general, the effect of errors introduced by: component tolerances
and variations from design center values, reading errors, calibration errors,
etc., is treated by considering each component or other error source
independently, computing the effect on the over-all operating accuracy
to be expected from each of the given errors, and combining results by
simple addition to give a limiting error or by probability methods (to
be discussed) in order to arrive at a probable error. There are many
situations, however, in computer design, where this type of analysis
leads to false conclusions. As is described in the foilowing section and
elsewhere, variations in several components may often be made to cancel
each other. For example, a divider network composed of elements with
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matched temperature coefficients operated at the same temperature
will show no change in the division ratio with changes in temperature.
Such components, whose errors are not independent, must be analyzed
together.

The subject of the combination of errors of independent components,
groups of components, or other independent error sources is one that
can be approached from two different viewpoints, each of which may be
applicable under certain circumstances. In many cases, the only sat-
isfactory procedure is to design the computer such that even if all the
effects of tolerances and variations under expected operating conditions
add unfavorably, the devices will still operate within the required limits
of accuracy, assuming that the desired performance can be described in
terms of limiting error. In other cases, particularly where the use of
the computer itself can be treated on a probability basis, there is con-
siderable justification for combining errors according to the methods of
probability. For example, such an approach would be justified in the
case of a bombing computer, since bombing is usually evaluated on a
probability basis. A serious problem immediately arises when this
method is applied to electronic components. One must assign probable
errors to components that are usually specified only in terms of limiting
errors. A method that has considerable use as an approximation for
engineering calculations assigns a ‘‘probable error” to a component
equal in value to roughly one-third the limiting error. The term “prob-
able error’’ is, of course, not strictly valid here; but since all the calcu-
lations are carried on as if it were a true probable error, the term will
be used, with the understanding that it involves a big approximation.
In a normal distribution, the figure of three times the probable error
would include 96 per cent of a large number of samples, whereas in this
approximation it includes all samples. It must be emphasized that the
results of an analysis of this type cannot be more accurate than the
assumptions on which it is based. However, the method allows cal-
culations to be made that are of great assistance in engineering a design
where limit values added unfavorably would give a completely mislead-
ing picture of the computer operation.

2-7. The Use of Servomechanisms in Computers.—A very important
tool in computer design is the proper use of servomechanisms. A servo
or servomechanism has been defined by Hazen! as “a power amplifying
device in which the amplifying element driving the output is actuated
by the difference between the input to the servo and its output.” A
detailed discussion of servomechanisms will be found in Part IT of this
volume and in Vol. 25. For purposes of illustration, a simple example

of the use of a servo in a computer is shown in Fig. 2-7. This simple
1 See Chap. 8.
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computer is the same bridge circuit of Fig. 1-1, but with the null meter
replaced by a servoamplifier and servo motor which adjusts resistance |
Z such that the bridge is always balanced, i.e., such that the voltage
between ¢ and d is zero. Its use in this simple computer allows the
computer to be automatically |
Eu operated rather than requiring

an operator to adjust the resist-
ance Z.
fnput @ > . .
ey ‘l z ot The use of servos in computers
Outpu allows a designer to apply high- |
Servo
=

amplifier d gain feedback techniques to loops

involving electromechanical ele-
1 ments, whereas without servos
feedback technique is limited
principally to all electronic loops.
Servos are also useful as parts of

Fic. 2-7.—Bridge computer for z = z/y, data-transmission systems. A
illus_trating uge of servomechkanism for auto- major advantage of servomecha- |
matic balancing. . L. . K

nisms is included in the defini-
tion, namely, that of torque amplification. The property of torque
amplification allows blocks to be connected in such a way that they do
not act back to disturb previous blocks.

2-8. Error Cancellation.—Accuracy is, of course, a factor of great |
importance to the computer designer. Accuracy may be achieved by
“brute force’” methods, in this case by making all components and
operations accurate to the requisite degree. Accuracy may also be
achieved by using components whose errors may be relatively large but
that are used in such a way that their errors cancel or nearly cancel each
other. Error cancellation is a concept of great fundamental importance
to the computer designer, and many applications of this concept are
found in every well-designed computer. Through the use of applications
of this concept, computers are made simpler for the same accuracy or
more accurate for the same complexity as compared with designs wherein
accuracy has been achieved merely by reducing all individual errors
independently. Although not always evident, the basic principle used
in most error cancellation methods is that of the bridge circuit.

Following are listed a few common applications of the techniques of
error cancellations. The list of applications discussed, although it is not
comprehensive, should allow other applications of the principle to be
easily recognized.

Reference and Power-supply Voliages—When precision is an important
factor, it is necessary to ensure that variation of power-supply and refer-
ence voltages will introduce only small errors. As described above, two

input
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approaches to this problem are made. In the first and most obvious,
but usually the most costly method, the voltage and power supplies are
highly regulated so that accurate and stable voltages are available. In
practice, the limiting factor in this procedure is usually the standard to
which voltages are regulated. This subject is discussed in detail in
Chaps. 15 and 16.

The second approach is that of cancellation of errors. Typical
methods falling in this category are bridge circuits such as the one
shown in Fig. 2-2, change of sweep slope in time-modulation circuits to
cancel changes in ‘‘pick-off”’ or comparison voltages (Sec. 3-17), and
condenser tachometer voltage output variation with supply voltage to
cancel changes in velocity servo control voltages (Sec. 3-17).

Even when error cancellation methods are used to avoid the effects
of supply variations, it is usually necessary to incorporate fair regulation
in the voltage supplies. The reason for this is that although first-order
cancellations can be taken care of by other means, second-order effects
may remain, and these, together with transient errors, may introduce
appreciable inaccuracies if voltages are allowed to change widely.

Where both a-¢ and d-¢ voltages are used in a computer as accurate
representations of the magnitudes of quantities entering into the computa-
tion, it is desirable, following the principle of error cancellation, to regulate
the alternating from the direct current or the direct from the alternating
current. The principal argument for regulating the direct current from
the alternating current is that to do the opposite by electronic means
requires control elements such as vacuum tubes or saturable reactors
that may introduce harmonics into the alternating current or require
heavy and complex filters if appreciable power is taken from the a-c
supply.

Other examples of error cancellation are the cancellation of altitude
error in the so-called H plus B bombing computers (cf. Sec. 3-7), can-
cellation of resistance variations in a voltage divider by matching tem-
perature or other coefficients (¢f. Sec. 3-2), matching error curves of
synchros to reduce operating inaccuracies when two synchros are oper-
ated together, ete.

A careful consideration of any computer desxgn from the standpoint of
possible applications of error cancellation methods is generally profitable.

2:9. Data Smoothing, Speed of Operation, and Stability.—It is the
rule rather than the exception that the input data of an analogue com-
puter either have power-frequency spectra differing from that which
would be considered optimum or have extraneous signals (usually called
“noise’’) mixed with them. Often input data are subject to both defects.
The average computer, therefore, will incorporate means for modify-
ing the power-frequency spectra of the data as they pass through the
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computer. Usually this modification takes the form of “smoothing,”
that is, removing or reducing high-frequency components. This is
illustrated by the action of an antiaircraft computer working with
automatic-tracking-radar line-of-position data. Such radar data, as
furnished by an equipment such as the SCR-584,! contain a consider-
able amount of high-frequency ‘“noise.” A computer, such as the BTL
Mark IX director, used with this data must do considerable ““smooth-
ing’’ in the process of computing data for gun pointing in order to assure
a high probability of hits. Different quantities must be smoothed in
different ways; for example, rate data derived from position data must
be “smoothed’ considerably more than the position data. Smoothing
is not the only type of frequency modification used. Removal of drifts,
that is, reduction or removal of low-frequency components, is also occa-
sionally necessary. The subject of modification of frequency charac-
teristics is discussed in Chap. 11, with some introductory material in
Chaps. 9 and 10.

The somewhat loosely used term ‘‘speed of response” is closely
related to steady-state frequency characteristics. The relationship is
analogous to the relationship between a function of time and its Laplace
transform. Speed of response is usually treated more satisfactorily from
a quantitative standpoint in terms of frequency characteristics. Veloeity
and acceleration errors are also useful quantitative indices of “speed
of response’ and are also discussed in Chaps. 9 to 11. Particular refer-
ence is made to the Farrell method for determining velocity and accelera-
tion errors from decibel loop gain vs. log frequency plots (See. 10-4),
and a simple criterion for the choice of transmission vs. frequency char-
acteristics reported by Graham (Sec. 11-10). This criterion specifies
that the transmission characteristic of a servo or computer should
approximate the amplitude spectrum of the useful part of the most prob-
able input signals, i.e., exclusive of noise, which is assumed to be uniform
with frequency.

Where feedback loops are involved, smoothing circuits and devices
must be carefully considered from the standpoint of stability. Refer-
ence is made to Chaps. 9 to 11 for the theory of stability in feedback
loops.

2-10. Reduction of Weight, Size, and Power Dissipation.—There are
a number of points in good engineering design that, if followed carefully,
may substantially reduce the weight, size, and power dissipation of an
electronic or electromechanical computer. While the subject of design
and construction practices is discussed in detail in Chap. 19, several of

1 “SCR-584 Radar,” Electronics, 18, 104-109, November 1945; 104-109, December
10458: and 19, 110-117. Februarv 1946.
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the more important points will be mentioned here, since they are important

basic principles in computer design.  Size, weight, and power dissipation

are intimately related, and circuit changes resulting in a reduction in any

of the three items may often be reflected as reductions in the other two.
Some important design principles are

1. Scale factors in a circuit or device should be such that some opera-
tions are carried out at small signal amplitudes and followed by a
signal amplification in a stage just preceding elements such as
detectors that require large signal amplitudes for good percentage
accuracy. This saves power.

2. Wherever possible, tubes should be normally nonconducting.
This also saves power.

3. The use of miniature and subminiature tubes and some other
special components saves both space and appreciable heater power
as compared with standard-size tubes.

4. The use of special card or subassembly methods (¢f. Chap. 19),
short leads, and sometimes sealed enclosures allows circuits to be
operated at high inpedance, thus saving plate and other power
and reducing inaccuracies due to loading of previous cireuits.

5. Where feasible from the standpoint of accuracy, etc., it is simpler
and more compact to compensate components for temperature
changes rather than to regulate temperature.

6. By close design it is possible to cut down the large factors of safety
usually provided as a substitute for accurate knowledge of com-
ponents and working conditions.

REPRESENTATION OF QUANTITY

2-11. Fundamental Concepts.—The term representation of quantity
as used here refers to the physical property of an analogue computing
system that is identified with a specific quantity in a system for which
computation is required. Thus, for example, in an aireraft navigation
computer, a specific quantity, altitude, in the system for which computa-
tion is desired may be identified with an a-c voltage in the analogue
system that is to perform the computation. In considering the repre-
sentation of quantity it is useful to distinguish between single-scale
and multiscale devices. Although multiscale techniques can be used in
addition and subtraction, they are not usually suitable for other com-
puting operations.

A single-scale data system may be defined for most purposes
as a system in which the full working range represents the full range
of the variable represented. An ordinary potentiometer is a simple
example of a single-scale device. A mulliscale data system is one in
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which two or more channels are provided, one channel in which the full
working range represents the full range of the variable represented and
one or more channels in which the full working range represents only a
portion of the full range of the variable represented and hence is repetitive
in covering the full range of the variable represented. The first channel
is called, alternately, the coarse, single-speed, or one-speed scale, and the
latter channels are called the fine or high-speed scales and provide a
‘““magnification’’ of the coarse scale. A high-speed channel may be used
without a coarse or single-speed channel, but in this case an ambiguity
of indicated value will exist. The principal advantages of multispeed
data systems are increased accuracy, increased resolution, and increased
gain. These are obtained at the expense of increased complexity.

Three criteria are particularly important in evaluating a specific type
of representation for a specific quantity at a specific point in a computer.
These considerations are impedance, scale factor, and useful range.
The question of whether bidirectional data or unidirectional data are
used is included in the third item. Impedance is considered from the
standpoint of the effect that a device will have on a prior device and its
susceptibility to pickup. The question of scale factor is a most important
one, particularly in d-c computers, since scale factors must be large
enough to make the proportional change of tube characteristics small yet
must not be so large as to necessitate unduly large tubes, to cause non-
linearity trouble with normal tubes, or to waste power and add unneces-
sary weight. The useful range of a device must be considered simultane-
ously with the scale factor in evaluating a representation of data. Useful
range is limited by such factors as nonlinearity, power dissipation,
mechanical limits, voltage limits, etc. Some devices need operate only
on the magnitude of a quantity, whereas in other devices both magnitude
and sign must be taken into account. For example, altitude is a quantity
that is represented by its absolute value, whereas latitude may be either
north or south and hence must have a sign associated with its magnitude.

2-12. Seventeen Important Types of Data Representation.—The
following list of representations covers those which are most frequently
found in electronic and electromechanical computers, although the list
is by no means complete. Following each type of representation will be
given the abbreviation that will be used in subsequent chapters in clas-
sifying the inputs and outputs of the standard blocks from which a
computer may be built. In this system of classifying abbreviations,
the symbols preceding the colon represent the inputs; those following
the colon, the outputs. Thus, a resistor dividing circuit having voltage
and resistance inputs and a voltage output would be represented by the
notation E, Z: E. Tt is to be noted that classification by data representa-
tion is lower in rank than classification by operation performed, according
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to the system used in Part I of this volume. The seventeen important
types of data representations are

Force, F.

Pressure, p.

Torque, T.

Translational displacement, S.
Angular rotation, 6.
Translational velocity, V.
Angular velocity, w.
Translational acceleration, a.
Angular acceleration, a.
Voltage, E.

Current, I.

Charge, Q.

Impedance, Z, usually resistance.
Frequency, f.

Phase, ¢.

Count, N.

Time interval, .

2-13. Some Characteristics of Various Types of Representation.—It is
not practical to compare every type of representation with every other
type. A few generalities can, however, be pointed out. It must be
remembered that there are exceptions to many of the following state-
ments, and each device should be considered individually.

Electrical vs. Mechanical.—The advantages of mechanical devices are:
fewer adjustments; no vacuum-tube or other similar component drifts;
greater ease in understanding; and less difficulty in writing complete
specifications.

The disadvantages of mechanical devices are: they are subject to
friction and wear; complicated procedures of design and construction are
involved ; and highly skilled labor is needed for producing precision deviees.

Advantages of electronic devices include: flexibility, in that many
devices may be made from standard parts; cheapness, in that semi-skilled
labor can wire complicated equipment and expensive tools and dies are
not required; short design time; in some cases, accuracy; lightness; and
speed of response.

Electronic disadvantages are: more controls are required in precision
circuits; vacuum-tube drifts and burnouts are sometimes bothersome
(this is normally not a serious limitation if proper design precautions
are taken): and electronic devices are usually more complicated to under-
stand and service, although new techmques embodying subassembly
construction are tending to change this.
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Aliernaling vs. Direct Current for Data Representation.—Alternating-
current advantages are the following: vacuum-tube zero drifts do not
seriously affect the over-all accuracy ; transformers can be used; in rotat-
ing machinery no commutators are required; d-c voltage levels may be
more easily isolated when a-c data are used; and additional variables are
available in the form of frequency and phase.

Alternating-current disadvantages are: difficulties arise in differentiat-
ing and integrating; a-c tachometers are not very satisfactory; and prob-
lems of phase shift, frequency variation, and unwanted electrostatic and
magnetic pickup are generally troublesome.

Direct-current advantages are: differentiating and integrating are
easy; because of this, simple and reliable phase lead circuits can be used;
no phase shift or frequency problems are encountered; and no electro-
static or magnetic pickup is involved.

Direct-current disadvantages are: drifts in vacuum tubes cannot be
distinguished from d-c¢ data; contact potential troubles areencountered;
difficulty with d-c voltage level is frequently a severe design limitation;
and no good d-¢ resolver is readily available.

Time Interval and Pulse Wareforms.—These are of some interest but
are usually more complex than other alternatives. They are most likely
to be useful when the output data representation required is a time
interval.

Impedance—The impedances generally used in computers are
resistors or transformers and resolvers. Resistances in the form of
variable resistors or potentiometers are good, simple transitions from
mechanical to electrical representation of data and are particularly
useful in bridge circuits.

Phase Shift—In some cases phase shift proves to be a reliable and
accurate means of representation. Phase-shift techniques, however,
require special design care; and where high accuracy is required, close
frequency tolerances must be imposed. Phase-shift techniques are
widely used in accurate time-modulation and -demodulation equipment,
{¢f. Vol. 20) which may occasionally be combined with computing
equipment,

Count.—Count is of more importance in the digital computer field
than in the analogue computer field. In the latter field, a typical prom-
ising application is in process control computers where the input data are
the number of items passing a counter station.

Frequency—Frequency is more likely to be used as a data representa-
tion for data transmission (telemetering) than for use in a computer.
A few uses in computers are common, as, for example, the use of a-c
frequency to represent the speed of rotation of a shaft on which is mounted
au alternator supplying the alternating current. Itis worth remembering
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that phase is the integral with respect to time of frequency or, conversely,
frequency is the time derivative of phase.

2.14. Summary of Chapter.—The following steps have been listed as
a suggested systematic design procedure: preliminary information, block
diagram, preliminary design, detailed performance analysis, detailed
design, construction of model, and repetition of steps. Basic principles
and techniques used in computers have been discussed under the follow-
ing topics: simplifications in the formulation of computer equations and
choice of over-all block diagram; explicit and implicit analogue com-
puters; errors, tolerances, and variations; error cancellation; use of
servomechanisms in computers; data smoothing and stability; and
reduction of weight, space, and power dissipation. The important sub-
ject of data representation has been treated in some detail. Seventeen
important types of data representation are listed, and some general
comparisons of some of their characteristics have been given. A con-
venient system of abbreviated classification of operations from the
standpoint of types of input and output data representations has been

introduced and is illustrated in the chapter which follows.



CHAPTER 3
ARITHMETIC OPERATIONS

By J. Lentz anp I. A. GREENWOOD, JR.

3.1, Introduction.—Arithmetic operations deseribed in this chapter
include the operations of addition, subtraction, discrimination, multi-
plication, division, and the ‘“identity operation’’ the latter term referring
to changes in level, impedance, scale factor, or representation.

In presenting the highly varied material of this chapter, the authors
have attempted to classify methods and devices according to the opera-
tions for which they are used rather than the method by which the opera-
tion is performed. Thus, for example, the method of multiplication
that is based on the equation zy = [z dy + [ y dz involves both integra-
tion and addition but is classified as a method of multiplication, the end
desired, rather than as a method of integration or addition, the means
employed. The operations listed above are further subdivided according
to the method used, and the shorthand notation discussed in Chap. 2
is used to indicate inputs and outputs.!

The operations described in this chapter may be said to be the heart
of most electronic, electromechanical, and mechanical computing devices,
for it is usually found that a generous proportion of the basic operations
that must be carried out are those listed above.

3-2. Addition Using Parallel Impedance Networks (¥ or I:F or I).—
1t is well known that if a network of linear impedances is energized by
two or more generators, the current or voltage at any specified point 1n
the network can be expressed as the sum of the voltages or currents that
each generator would produce were it alone connected to the network
with each of the other generators replaced by its internal impedance.
This property makes possible the use of such networks to perform the
addition of voltages and currents. Subtraction of quantities as well as

11n this scheme, the symbols preceding the colon represent the inputs, those
following it the outputs. Thus (E,E:I) would indicate a device with voltages as the
two input representations and a current as the output representation. Usually only
the most important variations of the representations used with any method are given,
but it will be understood that others may be possible; for example, by including an
appropriate resistor, most data represented as current can also be represented as
voltage. Derivatives of the inputs and outputs given may usually themselves be
considered inputs and outputs. Thus, a mechanical differential adding rotational
displacements may also be used for adding rotational velocities, the output being also
a rotational velocity.

32
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the addition of quantities is also accomplished by this method by the
representation of positive quantities by negative voltages or reversed
currents. The following discussion is limited to a few of the simpler
examples, as the general topic of addition of electrical quantities has
been covered in some detail in Vol. 19, Chap. 18.

A simple illustration of this principle is shown in Fig. 3-1a, the opera-
tion of which is easily understood by reference to its Thévenin equivalent
shown in Fig. 3-1b. This circuit has the advantage that each voltage
source may have one terminal grounded, as is usual and convenient
in vacuum-tube circuits. The network is particularly useful as an input
network in a feedback amplifier where the algebraic sum of several
voltages and a feedback voltage is used as the input error signal to the
amplifier and is made nearly equal to zero by the feedback connection.

g =(Bf EyR) Ry R
O " \R*Ry Ry+Ry/| Ry Rz/(R,+Rz)+RL
E R Ry R,
! E Btk B High gain
R, 0. amplifier E
" V) 0
RL = R -
3 3
Sy g 23
= z “2]
(a) (c)

F1a. 3-1.—~Addition with parallel impedance networks.

This is illustrated in Fig. 3-1c. With the circuit of Fig. 3-1c and assuming
infinite gain in the amplifier, the output voltage E, is proportional to
the negative of the algebraic sum of E; and E,, each multiplied by a
constant that is a function of the network. There are many variations
of this simple circuit, among the most important of which are the sub-
stitution of capacitances and inductances for the resistances E; and R, of
Fig. 3-1, giving integrating and differentiating circuits. This subject is
discussed in the following chapter and in Vol. 19, Chap. 18.

There are a number of practical considerations that should be taken
into account in connection with this circuit. In order to obtain pre-
cision operation over a range of conditions, the ratios of the impedances
must remain fixed. This means, among other things, that temperature
coefficients must be matched to the desired precision, although there is
usually no requirement that the absolute value of the coefficient be
zero if all components operate at the same temperature. If, however,
there are variations in temperature between components, such as might
arise from local hot spots near high dissipation elements, then such tem-
perature differences will act on the absolute temperature coefficients to
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produce errors. As an example, suppose resistors Ry, R, and R; of
Fig. 3-1 are precision wire-wound resistors whose temperature coefficients
are plus 300 + 5 ppm/°C. In order to calculate maximum errors,
assume that the coefficients of R; and IZ; are 205 ppm/°C and that the
coefficient of Rsis 305 ppm/°C. Then, for a 100°C change in tempera-
ture, £, will become

R3(1.0305)
' R1(1.0295)

24(1.0305)
? R2(1.0295)

Eolio = E + E = 1.00097E,, (1)
a change of only 0.1 per cent for 100°C change of temperature. On the
other hand, if | and R, are at the same temperature and R; differs from
that temperature by only 10°C, then

R;3(1.00305)
1 Rl

y ERo(100305) _y hososm, (2

E0110° diff = E R2

a change of 0.3 per cent for 10°C temperature difference, or only 3.3°C
difference for the same 0.1 per cent change calculated above for a 100°C
change of temperature.

From this discussion it follows that elements used in circuits of this
type should have low absolute temperature coefficients and should be
mounted to ensure a minimum of local temperature variation. These
requirements have sometimes necessitated use of a copper temperature-
equalizing strip between elements where low absolute coefficients are
unavailable or undesirable for other reasons but where high precision
must be maintained.

If, as is usual, the operations performed by the circuit of Fig. 31 or
those like it must be accurate, then either all voltages and all impedance
ratios must be accurate, or either impedances or voltage scale factors or
both must be made adjustable to allow for production tolerances in
impedances or voltages. If the network has been made from large
fixed resistors in order to avoid loading the voltage sources E, and E.,
then large adjustable resistors will be required. The stability and tem-
perature coeflicients of such adjustments must be carefully taken into
account in the -~hoice of network impedances and tolerances. The
commercial availability of resistor networks matched in value to 0.1 per
cent makes it possible 1n many applications to eliminate impedance
ratio controls where resistance adding circuits are used. Alternately,
other design considerations may dictate adjustment of voltage scales,
using this adjustment to compensate for production tolerances in imped-
ance ratios.

Zero adjustments in this circuit are best made in the amplifier itself,
and for a discussion of this problem the reader is referred to Vol. 18.
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Bridge circuits are also useful for addition and subtraction of voltages
and currents. In a balanced bridge network Fig. 3-2 the mutual
coupling between inputs is reduced to zero. The most useful form of this
circuit is the equal-arm bridge network, as illustrated in Fig. 3-3. For

this circuit,
_Z E, . Es
E°_§(Z+zl+z+zg)’ @)

and the mutual coupling between E, and E, is zero. Theinputimpedance
at either input is Z, 7, and Z, being source impedances.

_z( B, B
Eq= 'z(z+zl+ z+zz>

Fia. 3-2.—-Balanced bridge. g, 3:3.- Equal-arm bridge

3.3. Addition and Subtraction with Series Sources (/for [: /i or I).—
The fundamental principle underlying this method of addition and sub-
traction is identical with that given in the preceding section; namely, if a
network of linear impedances is energized by two or more generators,
the voltage or current at any specified point in the network can be
expressed as the sum of the voltages or currents that each generator
would produce were it alone connected to the network with each of the
other generators replaced by its internal impedance.

If two generators of internal impedances Z, and Z; and internal
voltages E; and E; are connected in series with a load impedance Z,,
the voltage E. across Z,, is given by

Z.(E,+ E,)
A 2 @
1If E, and E; each represents a distance to a scale of, say, 1 ft per volt, then
E_represents the sum of the two distances toascale of (Z, + Z, + Z.)/Z..
ft per volt.

It is to be noted that with series addition and subtraction, all genera-
tors but one must be such that their terminals may be isolated from
ground (“‘float”) if the desired sum or difference must be with respect
to ground. If the sum or difference is desired as the voltage across two
terminals that may both be isolated with respect to ground, then all but
two generators must be isolated from ground. “Ground” is here used
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in the sense of a reference node; it is by no means uncommon for this
node itself to vary with respect to ground as part of another circuit.

In using series addition and subtraction, the effects of stray imped-
ances, usually capacitances, from various parts of the series network to
ground must be carefully considered. Where alternating current is used,
these stray impedances are apt to give troublesome phase and amplitude
changes. If there is a-c information or ripple on the reference node

Ep

P.m.
generator RZ

R3

L “‘Ez Eq

Eo=E\1E,

(d)

Fia. 3-4.—Addition or subtraction with series sources.

unbalanced impedances to ground may cause undesirable amounts of
a-c voltage to appear in the series network.

A number of typical examples of series addition and subtraction are
shown in Fig. 3-4.

3-4. Addition and Subtraction with Synchros (6,6:6 or E).—By the
use of a chain of three synchros (Fig. 3-5), consisting of a synchro gen-
erator, synchro differential, and either synchro control transformer or
motor depending on whether or not a servo drive is desired, a shaft rota-
tion may be produced that is the sum or difference of two shaft rotations,
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and any of the three synchros may be remotely located with respect to
the other two. Thus, in Fig. 3-5, 3 = 6; + 6»; or if connections or
definitions of positive directions are changed, 8; = 6, — 8, 0r 6 = 6, — 6.
The method may obviously be‘extended to a chain of more than three
synchros.

This method has the advantage that multiscale methods may be
used. By the use of, say, 36-speed synchros as well as the 1-speed syn-
chros shown,! the accuracy of the 36-speed synchro chain may be realized
in the addition or subtraction indicated. The method is therefore one
of great accuracy and flexibility and is often used where the input and
output data may be mechanical shaft rotations or may easily be changed
to shaft rotations. A typical example of the use of this method is the

(O pd
A-c{ . 53 vg{/ Servo

‘ T
: | U, -.:
' A -
' ! |
t
9, 92 93
0:=6,%8,

Fra. 3-5.-—Addition or subtraction with synchros.

introduction of ballistic lead information into the servo-positioning of
guns from synchro data representing visual or radar line of sight to a
target.

It is of some interest to note that by the addition of a voltage of
amplitude E sin 84 to the output of the control transformer synchro,
where E is the maximum rotor output voltage, it is possible to shift the
output shaft position from 6; to 6; + 6,.

This method is useful when a shift of the output shaft by only a few
degrees is desired and where electrical data are available. An example
of the application of this method is the roll and pitch correction of a radar
azimuth marking cireuit using synchros by means of signals derived from
a vertical gyro or gyros.

3-b. Impedance Addition and Subtraction (Z,7:7), (8,6:6).—1It is
frequently convenient to represent the physical parameters involved in
the solution of a problem as impedances. Quantities represented by
impedances may be added simply by connecting the impedances in series.

' See Sec. 13-8 for a discussion of multispeed data-transmission circuits.
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Bridge methods of compounding mechanical rotations based on
impedance addition have been found quite useful. In Fig. 3-6a is
shown a type of system that has been employed to add two shaft rota-
tions. Z, and Z, are two variable resistors whose resistances are linear
functions of the rotations of their shafts. The bridge whose elements are
Zoy, Zv, Zy+ Zs, and Z;, is kept in
balance by means of a servomecha-
nism, using as an error signal the
voltage at the horizontal junctions
of the bridge. The servo operates to
adjust the impedance of the resistor
Zs. If Z,, Z,, and Z; are identical
linear variable resistors, it is easy to
see that

0:=(6,+6,)(2:/Z,)
(a)

63 = (1 + 62) 5 (5)

By the use of a simple variation
of this circuit, an interesting com-
puting device may be designed to
solve for one side of a right triangle,
given the other two sides. The

TR

k
)
Rlz=(%)_"_' 1 R
2

(b)
Frg. 3:6.—(a) Addition of shaft rota-
tions with bridge; (b) element of squaring
and square-rooting bridge.

description of this circuit is presented
here as a variation of the circuit
previously described, although it ‘
performs a nonlinear operation on |

the sum of the squares of two
quantities. It will be referred to again in Chap. 5.

Suppose that Z,, Z,, and Z; of Fig. 3:6a are identical, each being a
potentiometer of resistance R bridged by an equal fixed resistance, as
shown in Fig. 3-6b, and that Z, = Z./2. If k is the fraction of the resist-
ance of the potentiometer included between the upper terminal and the
slider, then the resistance between terminals 1 and 2 is (1 — ?) (R/2);
or if § is the angle of rotation of the shaft and 8, the total travel of the
shalt, k = 6/6, and Ri. = (1 — 6°/67) (RB/2). When the bridge is in
balance

1{, &R B3R\ _ . @R
2( e;é‘“‘ﬁgi)—l—j" (6)
or,

1Ot + 63) = 63,

05 = —12- V63 -+ 6 )
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If 6, and 8, are proportional to the perpendicular sides of a right triangle,
then 6, is proportional to the hypotenuse.

In the practical design and construction of these circuits, variable
resistors or potentiometers must be used whose total angle and total
resistance or in some cases resistance change per degree may be specified
to the desired accuracy. Alternately, suitable adjustments for variations
in these units must be included. Simple analysis will show that the
necessary adjustments are not easy to incorporate in all cases. It is
also necessary to take into account the variable gain of the servo loop.
The variation of servo loop gain is discussed in Sec. 11-9.

3-6. Addition and Subtraction with Mechanical Devices! (S or 6:S
or 8).—The most frequently used mechanical device for addition and
subtraction is the differential gear
unit. This is so well known that
no desecription is called for. The
biggest problems with differentials
have been backlash and procure-
ment.? Good differentials require
very careful workmanship and are 6. = 2(S;+5,+ 53) Radians
likely to be rather expensive. ° r

Mechanical motions are {fre-
quently added by means of hydraulic systems, in which the displacement
of a piston is proportional to the sum of the displacements of two or more
other pistons.

Another way of adding and subtracting mechanical motions is by
means of levers. Nearly all the operations of computing may be per-
formed with levers. Lever computers are discussed at length in Vol. 27.

Another mechanical method for addition and subtraction involves
pulleys and tapes or wires and is shown schematically in Fig. 3-7. It
produces an angular rotation 6, proportional to the sum of a number of
linear displacements 81, S5, Sz . . .

3-7. Addition of Time Delays (/,¢:{).—This method appears suitable
for addition but can probably be used for subtraction only through the
use of implicit methods.?

If a series of time-modulation circuits are each triggered at the end
of the previous delay, the total delay produced is, of course, the sum of
the individual delays. This method has found its widest application in

'For an excellent summary of mechanical methods in computers, see M. Fry,

‘'Designing Computing Mechanisms,” reprinted from Machine Design, August 1945
through February 1946.

* Instrument differentials were made during the war by Ford Instrument Co.,
Librascope, International Business Machines, and others but may not now be avail-
able as units.

7 See Sec. 2-5 for a discussion of implicit methods.

I'ts. 3-7.—Addition using pulleys and tapes.
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multiple-scale time-modulation circuits! and has also been used in the
so-called “H 4 B’ solutions of the triangle involving altitude, ground
range, and slant range. In aircraft applications it is frequently more
accurate to generate a slant range time marker corresponding to a certain
{small) ground range by adding a quantity B to the altitude delay rathor
than by directly generating a time delay equal to the entire slant range.
In the equation

B =~R*+h —h (8)
B does not vary rapidly with h.

h+ B =), . 9

where b = altitude,

R = ground range,

p = slant range,

B = difference between slant range and altitude.
The principal advantage of this solution lies in the fact that the same
radar zero and setting errors that would appear in the generation and
use of a slant range marker directly are canceled to a first approximation
by their introduction into the h settings, providing the h marker is set to
the first ground return (altitude signal) in the same manner that the p
marker is set to a radar target. This allows the use of a short B delay
whose absolute accuracy may therefore be good, added to an :ltitude
delay whose calibration need only be good enough for computati - ¥ 3.
See Vol 22 for a more complete discussion of this method of solution of
the altitude triangle.

The usual precautions regarding accurate, reliable triggering, inde-
pendence of repetition rates, etc., should be observed.

3-8. Addition and Subtraction of Pulse Counts (N ,N:N).—The
method of addition and subtraction of pulse counts is the basis on which
pulse digital computers, such as the ENIAC and EDVAC? computers
of the University of Pennsylvania, are built.

Another application of pulse counting is in the Loran timer and
receiver-indicator equipments.® In this equipment a pulse is fed back
(injected) in a counting or dividing circuit, the amplitude of the injected

I

t See Vol. 20, Chap. 6.

2 A number of articles on this computer development have appeared; see, for
example, ‘“‘Electronic Calculating Machine Is a Giant of Precision,” Elec. Mfy.,
142, April 1946; “ENIAC: War Dept. Unveils 18,000 Tube Robot Calculator,”
Electronics, 19, 308, April 1946; and D. R. Hartree, “The ENIAC, an Electronic
Calculating Machine,” Nature (London), 1567, 527, Apr. 20, 1946.

* Volume 4 or any of a series of recent articles, such as ‘“The Loran System,”
Electronics, 94, November 1945; and “Loran Receiver Indicator,” Electronics, 110,
December 1945.
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pulse controlling the number of counts by which the firing period of the
divider is reduced for the cycle in which injection occurs.

For detailed information on pulse digital computers, the technical
reports of the University of Pennsylvania should be consulted.! Pulse
counting is also discussed in Vol. 19, Chap. 16.

3.9. Addition and Subtraction by Simple Vacuum-tube Circuits
(E or I:E or I).—Vacuum-tube circuits for addition and subtraction may

Ex be used where their use is dictated by the
requirements of bandwidth, isolation, and
impedance level. These methods have
been discussed in considerable detail in Vol.
19, Chap. 18, and Vol. 18, Chap. 10. Infor-
mation here presented is limited to a sum-
mary of available circuits and some of their
major characteristics; the reader is referred
to the previous volumes for details and
practical circuits. Vacuum-tube -circuits
for addition and subtraction are classified
Fie. 3-8.—Multiple input tube as mulfiple tnput, illustrated in Fig. 3-8;

adding cireuit. common plate load, illustrated in Fig. 3-9;
common cathode load, illustrated in Fig. 3-10; and the differential amplifier,
Fig. 3-11.

Tte multiple input circuit is limited by the number of eclectrodes.
introduces weighting factors depending on the tube characteristics, has
an input impedance of 1/¢. at the cathode and high at the grid, has a
tube output impedance of approximately r,, and can be used for subtrac-
tion as well as addition if cathode input is used. Both the common
plate and common cathode methods may operate with any number of
inputs, each input requiring one tube section; the weighting factors are
adjustable if series resistors are used; the input impedances are mainly
those due to interelectrode capacitance and grid currents; the output
impedance is approximately r,/n for the common plate circuits and
1/ng. for the common cathode circuits; and neither can be used for
subtraction. The differential amplifier usually has two grid inputs,

! Technical reports on pulse digital computers include the following published by
the Moore School, University of Pennsylvania: J. Von Neumann, “First Draft of a
Report on the EDVAC,” “ENTAC Progress Report to December, 1943, “ENIAC
Progress Report Jan. 1 to June 30, 1944,” “ Description of the I:NIAC and Comments
on Electronic Digital Computing Machines,” and ** Automatic High Speed Comput-
ing, a Progress Report on EDVAC.” Other reports are “A High Speed Digital
Computer,” published by the Eastman Kodak Company, Rochester, N.Y., and
A. M. Turing, “The Proposed Electronic Calculator,” National Physical Laboratory.
Previous footnotes have listed popular articles on the subject. Final reports on the
ENIAC and EDVAC are heing prepared.
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although a cathode input can also be used; the weighting factors may be
adjusted by resistors; the input impedance at each grid is high; and the
input impedance at the cathode is 1/2g,.. The differential amplifier
may be used for subtraction or addition, the voltage between the plates
being proportional to the difference between the grid voltages, and the:
cathode voltage being proportional to the average of the two grid voltages.
In all these circuits, the output impedances given must be combined with

| S

Generai circunt Equivalent circuit
Fic. 3-9.—Common plate-load addition.

0D .

—0g,
RK __ %1

Y16, 3-10,- -Common cathode-load uaddi- Fii. 3-11.——Differential amplifier for
tion, adding and subtracting.

load impedances in the usual manner to obtain the output impedance
of tubes and load taken together.

3-10. Discrimination.—Discrimination differs from subtraction in
that in subtraction an output is obtained that is accurately proportional
to the difference between two input quantities whereas in discrimination
the output indicates which of the two inputs is larger but need provide
only a rough measure of the difference. Thus, for example, if two voltage
generators are series-connected with polarities reversed, the resulting
voltage not only goes to zero when the two generators have equal voltages
but also is accurately proportional to the difference of the two voltages
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even when their sum isnot zero.  On the other hand, a vacuum-tube modu-
lator, because of the curvature of its characteristics, may give a non-
linear output as a function of the difference between two input signals
vet accurately indicate the equality of the input signals by a zero signal.
The distinction between diseriminators and subtraction devices is thus
seen to be largely one of quantitative accuracy of output and usage
rather than any fundamental difference. Nevertheless, the distinetion
has been found to be a helpful one.

Discriminators, because of the properties that are stated and implied
in their definition, find one of their biggest fields of application in feed-
back circuits and feedback loops, where they are used to derive error
signals representing the inequality of inputs.

Although there seems to be no basic reason why there should not be
devices that act as discriminators with the two inputs expressed as
different representations, it is nevertheless true that most of the dis-
criminators of importance in the design of computers and other elec-
tronic circuits operate on two inputs for which the representation of
data is the same. In reading the following descriptions of discriminators,
the reader should keep in mind the voids that exist in the field of mixed
input representation discriminators. .Discriminators with output repre-
sentation differing from input representation are not at all uncommon.

For certain special applications, discriminators may be made time-
sensitive. Thus, for example, a differential amplifier may be used to
compare an a-c voltage and a d-c voltage by allowing the tube to conduct
only at a time corresponding to the portion of the a-c waveform that is
to be compared with the d-¢c voltage. This might be done by applica-
tion of a plate voltage pulse or by unclamping the cathode from a high
positive voltage. Discriminators may be classified as unidirectional or
bidirectional, depending upon whether or not the discrimination action
is approximately the same on both sides of the region where the two
inputs are equal.

1t follows from what has been said that all of the devices for subtrac-
tion which have been discussed in preceding sections may also be used
for discrimination, although by definition the reverse is not true if
accuracy is desired.

Voltage Discriminators (E,E:EorI).—Devices discussed in the category
of voltage discriminators will be those in which the inputs are both
voltages and the outputs are voltages or currents.

In the switch-type modulator, as represented by such devices as the
Brown instrument vibrator, two voltages whose variation is slow com-
pared with the vibration frequency (in the case of the Brown vibrator,
60 cps) are discriminated to give an output that is an a-c voltage whose
amplitude is indicative of the difference in voltage between input (and
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may be accurately proportional) and whose phase with respect to the
voltage exciting the vibrator indicates the sense of the input inequality.
These devices are discussed in Chap. 9, Vol. 19. Equivalent in function
are a variety of bridge- and other type modulators using diodes and
contact rectifiers, also discussed in that section.

There are available a variety of triode and multigrid tube circuits
designed as balanced modulators which are useful as voltage discrimi-
nators, the inputs again being slowly varying voltages and the outputs
being a-c¢ voltages or currents whose amplitudes are indicative of or
proportional to the difference between the inputs and whose output
phases relative to the carrier alternating current supplied to the circuits
indicate the senses of the input inequalities. A number of such circuits
are given in Chap. 9, Vol. 19, and many more may be found in the litera-
ture of communication engineering.! Itis to be noted that these balanced
modulation circuits, although having the useful property of gain and
high-impedance inputs, are no better with respect to stability than direct-
coupled amplifiers.

An ingenious and accurate modulator which may be used either for
subtraction or for amplitude discrimination of two d-¢ (or low-frequency
a-c) signals is based on condenser microphone principles. This type of
device, developed by RCA for some of their wartime computers and by
others?, consists of a diaphragm or reed put into mechanical vibration
by a-c excitation of an electromagnet. Small pickup plates mounted
parallel to the diaphragm (or reed) and close to it form small capacitors
whose capacitances are varied by the membrane’s vibration. If a d-c
potential exists across such a capacitor, then the periodic variation of its
capacitance will cause an a-c¢ voltage to appear across a resistor in series
with the capacitor. The amplitude of this a-c voltage is proportional
to the difference in d-c potential across the capacitor, and its phase rela-
tive to the a-c excitation reverses as the sign of the difference in potential
changes. This device is also useful for changing the data representation
from direct to alternating current. A more complete description of
this type of modulator will be found in Vol. 19. A photograph will be
found in Chap. 19 of the present volume.

Current Discriminators (I,1:I or E).—An interesting and occasionally
useful device for amplitude discrimination of d-¢ or low-frequency a-c¢

1 See, for example, F. E. Terman, Radio Engineers’ Handbook, Sec. 7, McGraw-
Hill, New York; and F. A. Petraglia, Electronic Engineering Master Indez, Electronic
Research Publishing Co., 1945, pp. 55, 207.

8. A. Scherbatskoy, T. H. Gilmartin, and G. Swift, “ Capacitative Commutator,”
Rev. Sci. Inst., 18, 415-421, 1947; H. Palovsky et al., Rev. Sci. Inst., 18, 208-314, 1947;
U.8. Patents 2,349,225 and 2,361,389.
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currents is the saturable core transformer.! It is well known that the
effect of saturation of the core of a transformer is the introduction of
only odd harmonics of the input into the output unless a constant mag-
netic bias is present, as by means of a direct current flowing through an
extra winding. If such a bias is present, the symmetry of excitation on
positive and negative peaks is removed and even-harmonic terms of
amplitude roughly proportional to the direct current flowing appear in
the output voltage. The phase of the even-order distortion terms reverses

B Ot
<

- &t
Fic. 3-12.—Saturable core current discriminator circuit.
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if the direction of flow of direct current through the third winding is
reversed. It is easy to see that if there are several windings carrying
direct current on the core of the transformer, the output voltage will
contain even-order components unless the algebraic sum of the ampere
turns set up by the several currents is zero and that the phase and magni-
tude of the even-order distortion terms will serve to indicate the direction
and amount that any given one of the bias currents should be changed
in order to make its magnetizing effect just equal to the algebraic sum
of the ampere turns of the other windings.

! During the war development work was done on saturable core transformers as
current discriminators by the Cornell University Physics Department, under OSRD
contract. The work was under the direction of Dr. H. S. Sack. See H. 8. Sack et al..
NDRC-14 Reports.
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Now suppose two siich transformers to be connected with primaries
and secondaries in series, but with secondaries so phased that their
output voltages oppose each other as in Fig. 3-12. With no bias mag-
netic field, there will be no output voltage from the combination. If
magnetic bias of opposite sense is applied to each of the two cores, as
by connecting a pair of bias windings in series with the same phasing
as that of the output windings and passing a direct current through the
pair, thre even-order distortion terms in the two secondaries will add,
and an output voltage will be observed that may be changed in polarity
by reversing the direction of current flow through the bias windings.
Pairs of transformers so connected have proved to be accurate and stable
current amplitude discriminators. They have further advantages in
that the currents being diseriminated may be at different voltage levels
and that each of the various currents may be multiplied by a scale
factor determined by the number of turns of wire in its coil.

As with other diseriminators, this device may be used as the error-
measuring part of a feedback loop. In this application the output of
the magnetic amplifier is amplified and used to control the current in a
coil on the magnetic amplifier such as to supply ampere turns nearly
equal and in an opposite sense to the algebraic sum of the ampere turns
supplied by the other windings.

Frequency Discrimination (f,f:E).—Where frequency is used as a
means of data representation, frequency discrimination may be required.
An example of such use is the case where the frequency of an a~c voltage
derived from an alternator is used as an indication of the velocity of
rotation of the shaft on which the alternator is mounted. Where two
frequencies are to be compared, the usual practice is to convert to some
other representation, with the discrimination in the other representation.
Where only a single frequency is to be compared with some fixed standard
frequency, a variety of frequency-sensitive bridge ecircuits and other
frequency discriminator circuits are available.!

Since phase and frequency are intimately related, phase being the
time integral of frequency, phase discrimination eircuits may sometimes
be used for applications where at first thought frequency discrimination
circuits would seem to be required. For example, if it is desired to control
a servomechanism such that its average velocity is constant, the fre-
quency of an a-c¢ voltage generated by an alternator on the servo output
shaft can be compared with a standard by means of circuits described in
the references cited or alternately can be controlled by discrimination

1 See, for example, F. E. Terman, Radio Enginecers’ Handbook, Sec. 13, Pars. 23-26,
McGraw-Hill, New York, 1943; F. A. Petraglia, Electronic Engineering Master Indez,
Electronics Research Publishing Co., 1945, “Frequency Bridges, 175; “ Frequeney
Measurement,” pp. 40, 176; “ Frequency Meters,” pp. 40, 177.
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of the phase of the generated a-c voltage and the phase of a standard
a-c voltage, which in this case might even be crystal-generated. Phase
discrimination circuits are discussed as the next topic in this section.

Phase Discrimination (¢,¢:E).—Circuits whose output is sensitive
to both the amolitude and phase relations of two a-c inputs are generally
referred to as phase detectors and have many important applications in
the field of servomechanisms and computers and in other fields where
sense as well as amplitude must be obtained from a modulated carrier.
Two distinct usages of phase information are recognized. In one class
of circuits, only phases different by nearly 180 electrical degrees are used,
and thus only information as to the sense of an accompanying amplitude
modulation is conveyed. A second class of circuits uses phase as a form
of data representation. Circuits designed for either type of operation
will usually operate properly as phase discriminators, for in this applica-
tion only rough information as to the sense and amount of phase differ-
ence between two quantities is required. Unless special precautions are
taken (limiters, etc.), amplitude variation of the input signals will
modify the output amplitude, but not the point of phase equality at
which the output is zero. Where this phase difference must be measured
accurately, the number of available circuits is considerably restricted.
For accurate measure of phase difference, phase discriminators may, of
course, be used in combination with accurate phase-shifting devices in
a feedback arrangement, as has been discussed in connection with other
types of discriminators. Phase discriminators have been discussed
elsewhere in this series, usually under the title of Phase Detectors; see
for example, Vol. 19, Chap. 14, and Sec. 12-12 of this volume.

Some work on phase detectors has been done by the Physics
Department of Cornell University, under NDRC sponsorship.! There
are a number of circuits described in the literature for phase
measurement.?

Time-interval Discrimination (t,t:E).—Where data are represented by
time intervals and two quantities are to be diseriminated, a time-interval
diseriminator is required. This subject is discussed in considerable detail
in Vol. 19, Chap. 14, entitled ‘‘ Time Demodulation,” and the reader is
referred to this treatment.

! See for example, H. 8. Sack, and A. A. Olner, ‘“A-c Potential Equalizers and
Phase-sensitive Detectors,” Cornell Report No. ACE-2, Cornell University, Oct. 26,
1945.

tF. E. Terman, Radio Engineers’ Handbook, McGraw-Hill, New York, 1943, Sec.
13, p. 21; “Phase Indicating Null Indicator for Bridges,” Electronics, 17, 242, August
1944; E. T. Ginzton, ““Electronic Phase Angle Meter,”’ Electronics, 16, 60, May 1942;
“Electronic Phase Bridge for Measurements,” Electronics, 16, 96, November 1942;
H. Nyquist and 8. Brand, ‘ Measurements of Phase Distortion,” Bell System Tech.
Jour., 9, 522, July 1930.
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Discrimination with other Types of Data Representation.—While dis-
erimination of data expressed in those types of representation most
common in electronic computers has been covered in some detail, it is
obvious that many types of discriminators for other types of data repre-
gentation have not been mentioned. It should be remembered that the
same concepts apply to other types of data representation, such as linear
displacements, shaft rotations, forces, torques, and pressures. Where
discrimination is desired between two quantities represented by some
physical variable for which the known discrimination devices are not
appropriate, discrimination may also be achieved by converting to a
new representation and discriminating in the new representation. Con-
version from one type of data representation to another is discussed in
Sec. 3-21.

MULTIPLICATION AND DIVISION

3-11. Mechanically Controlled Voltage Dividers or Multipliers (¥ or I,
S or §:F).—In this section a number of devices will be considered in which
the output voltage is proportional to the input voltage multiplied by a
constant where the constant is adjustable by mechanically changing the
relative orientation or spacing of parts, examples being potentiometers,
linear-wound synchros, and condenser voltage dividers. These devices
will be considered in this section from the standpoint of linear multi-
plication, that is, the type of operation in which the transfer constant
referred to above is made proportional to some mechanical parameter
such as shaft rotation. Such devices modified in their design to produce
transfer constants that are nonlinear functions of the input mechanical
variable are discussed in Chap. 5.

Potentiometers.—Precision potentiometers are widely used as multi-
plying devices because of their high accuracy, simplicity, ruggedness,
and relatively low cost. They are useful for both d-c and a-f a-c appli-
cations. Their practical limitations are those of impedance and speed
of response, the latter limitation arising from the fact that they must be
mechanically controlled. Potentiometers have been discussed in consid-
erable detail elsewhere in this series,! and the reader is referred to these
treatments for details.

Precision Variable Autotransformers—In a manner similar to the
potentiometer multiplication described above, multiplication can be
performed in the case of a-¢ potentials by means of a variable auto-
transformer, sometimes referred to by the trade name Variac.? Variable

1Vol. 17, Chap. 8; Vol. 19, Chap. 12, entitled ‘“Electromechanical Amplitude
Modulation”’; and Sec. 12-3.

2 General Radio Co. trade name. A number of competing devices are also
available.
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autotransformers on the market at the present time are coarse deviees
designed for the control of power and do not permit a precision of better
than several per cent. Experiments have bheen made with specially
constructed variable autotranstormers! having particularly homogencous
cores. These were wound very carefully with thin wire to give good
resolution and linearity. By carefully adjusting the position of the
brush it is possible to obtain a linearity of 0.1 per cent with highly
reactive loads.

The advantage of the variable autotransformer over the potentiom-
eter is that the linearity of its output voltage does not suffer when a
low-impedance reactive load is used. For best results both the load
and the transformer should have high @'s. Because of this low-imped-
ance feature, it is possible to cascade several preeision autotransformers
or to drive other devices such as resolvers with them directly without the
necessity for introducing vacuum-tube driver circuits. The inductance
of a small autotransformer suitable for computer application is of the
order of 2 henries.

Precision variable autotransformers have been used by the British
and are designated as ‘“ Magslip I-pots.” I-pots have been used by the
British to drive directly devices such as the 3-in. Magslip resolver. Data
on an early British I-pot available to the authors indicates an accuracy
of approximately 12 per cent, but it is not known whether or not more
accurate results have been obtained.

Synchros—In the usual synchro or synchro-type resolver, the out-
put voltage for a fixed input voltage usually varies with the sine of the
angular rotation of the shaft from the zero or null position. However,
it is worth noting at this point that synchros have been designed so that
the constant relating output voltage to input voltage varies linearly
rather than sinusoidally with shaft rotation over a limited range.

Condenser Voltage Dividers.—The subject of condenser voltage dividers
in which one of the condensers is controlled by an input shaft rotation is
discussed in detail in Vol. 19, Chap. 12,

3-12. Electromnically Controlled Voltage Dividers (E E:E).—There
appear to be at least two fundamental ways of electronically controlling
a voltage divider. In one method an impedance in a divider network
is made variable, for example, by varying the plate resistance of a vacuum
tube by means of grid control or by varying the power in a high-tempera-
ture coefficient resistor operated at a constant ambient. In a second
method, an input voltage is switched on and off by a rectangular wave-
form whose duty cycle is made proportional to another input voltage;

1H. 8. 8ack, J. J. Taylor, and R. N. Work, “ Preliminary Results on Calibration of

Autotransformer,” Report NDRC-364, Cornell University, Research Contract
OEMsr768, Jan. 16, 1945.
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averaging the resulting output waveform then yields a d-¢ voltage pro-
portional to the product. The switching in the latter scheme is accom-
plished by an on-off device such as a vacuum tube alternately driven
and cut off, and hence its characteristics are only of second-order impor-
tance. A third method, that of varying of the gain of an amplifier, is
considered to be distinct from the two methods given and is discussed in
the following section.

Variable Impedance Method.—There is little to be said about the
variable impedance method except that it is included for completeness
but is likely to be extremely inaccurate. It may, however, find uses
where only crude but simple multiplication is required, as, for example,
in circuits where a stage gain must be changed to maintain a reasonably
constant over-all gain but where precision is not important.

Pulsed Attenuator Circuits.—A method has been developed that per-
mits simultaneous multiplication and division and therefore combined
operations such as the taking of
A Attenvator |a=kA | Adiustor square I‘OO'tS, squa.ring, ete., with
(4) secion | “agC d-¢ potentials for inputs and out-
puts. Referring to the block dia-
gram (Fig. 3-13) (4) designates an
attenuator. The input potential
A is fed into the attenuator and a
fraction of it kA4 is received at the
output. This output kA4 is fed
into an attenuation adjustor,
which equalizes the input £4 to
Fig. 3-13.—Pulsed attenuator computer another potential a,, by feeding

block diagram. back to the attenuator informa-
tion that adjusts the attenuation constant k. If now this attenuation
constant is applied to a second attenuator (B), identical with the first
one, and a potential B is fed into this second attenuator, the output b
of the second attenuator will be

B Attenuator | b=% a

(B)

b= kB = a % (10)

thus performing a multiplication and a division.

Different models differ in the type of attenuators and attenuation
adjustors used.

While a simple but rather coarse instrument (accuracy of a few per
cent) can be obtained by using an electronically controlled variable
impedance as the attenuator, a more precise and more stable device is
obtained by designing the attenuator so that the tube characteristics
enter only in the second approximation. Such attenuation is accom-
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plished by an electron tube that is intermittently blocked. The transfer
constant & is given, in a first approximation, by the ratio of the time
during which the tube is blocked to the total time considered. This
operation is accomplished by applying to a vacuum-tube grid a rec-

Ey,

EJ

Negative
trigger
—o

B
R,
R
ab]
Tz C 1
] = )
Ry \— %R:t

Ry '

Fio. 8-14.—Pulsed attenuator computer schematic.

tangular waveform in which the relative width of the positive portion is
controlled by the attenuation adjustor.

Two different models based on this principle, using different types of
attenuators, were developed! and will be discussed briefly. One of the

1 The work on these devices was done for the Radiation Laboratory under OSRD
contract by the Physics Department of Cornell University and was under the direc-
tion of H. 8. Sack. For furthér details reference is made to NDRC Report No.
14-435 and the Cornell thesis of A. C. Beer and H. W. Boehmer. The material of this
section on pulsed attenuator eircuits closely follows a summary of this work kindly
furnished by Dr. Sack. -

E. G. & G. LIBRARY
LAS VEGAS BRANCH
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circuits is reproduced in Fig. 3-14. The two tubes 7', and T constitute
the two attenuators. The inputs A and B are applied to the plates of
these tubes through large resistors Ri. The screen is kept at a constant
potential, in this case approximately 45 volts. The rectangular wave-
form that regulates the attenuation is applied to the grid. In the case
of attenuator (4), the output is taken from the point labeled a; condenser
C: smooths the output. It is evident that while the grid is negative,
the condenser will be charged up, whereas it will be discharged during
the period when the grid is positive. 7T and T, form, therefore, attenu-
ators of the type required in this kind of circuit. The attenuator output
a is fed to one grid of a differential amplifier while to the other grid of
this amplifier is fed the other input potential a;. The differential ampli-
fier consists of two stages of twin triodes Ty and Ts. Condenser C;
eliminates oscillations. The output of this amplifier, which is propor-
tional to the difference between a and a,, is fed through a resistor divider
to one grid of a delay multivibrator! (DMV), Ts. The DMV is trig-
gered on the grid by a positive trigger source not shown. The output
of the DMV is a rectangular waveform, the relative width of which
depends on the input d-¢ potential. This waveform amplified by a
pentode T is applied to the grids of the attenuators. The connections
are so arranged that if a is larger than ao, the width of the negative pulse
on the grid of the attenuator will decrease, thus decreasing a; if a is
smaller than a,, the negative pulse width will increase, and a will increase.
In this way a is always kept nearly equal to ao as required. If, further-
more, the resistors and tube clamping impedances in the two attenuators
are the same, then the output of the second attenuator is equal to a.(B/a).

Control Ri0: permits the zero adjustment of the differential amplifier.
Control Rig; regulates the appropriate level of the input to the DMV.
A diode, the second half of the twin triode T, limits the input potential
to values below the critical value at which the DMV oscillates continu-
ously; the correct value is obtained by adjusting the control R0 ' The
adjustments of 102 and Ry have to be made by observing the output
of the DMV on an oscilloscope, adjusting them till the width of the pulse
varies over the whole range without changing the mode of operation
as the input a varies over its permitted values (or, at a given value of
ao, A varies over its whole range). Another diode, formed by one half
of a twin triode T, limits the level of the grid of the attenuator tube.
This level is adjusted by Ri03 and should be of the order of —3 volts for
the tubes that were used here.

The precision that can be obtained by this apparatus depends on a
number of factors. The first one has to do with the clamping charac-
teristics of the attenuator tubes. As these tubes are used, the clamped

1 8ee Chap. 5, Vol. 20, for details for this circuit.
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plate potential is roughly 1 volt or less. Good attenuator tubes would
require that the plate resistance in this low-voltage range should be
independent of the voltage and should be the same form one tube to
another. The 6V6 proved to be the most satisfactory tube in this
respect among a great number tested. The input impedance of the
following stage, consisting of the leakage resistance of condenser C, and
the input impedance of the succeeding electronic device, should be high
as compared with E,, constant, and the same for the two attenuators
within 1000 megohms, expressed in terms of shunt resistance. Another
important factor in the precision is the stability of the differential ampli-
fier, in particular, the zero stability of the first stage.

Tests showed that the precision is somewhat better than +0.2 per
cent of maximum output with inputs ranging from 23 to 57 volts for
a0, 46 to 230 volts for A, and 22 to 230 volts for B, which means 5 to
165 volts at the output.

A second circuit! uses push-pull attenuators. In this circuit, the
design of the attenuation adjustors is nearly identical with the first
circuit, except that the first stage of the differential amplifier consists of
two pentodes instead of a twin triode; the condenser that is inserted to
eliminate parasitic oscillations is introduced in a different way; and the
various levels have different values. It was found that a precision of
+0.1 per cent could be obtained when a single-ended input did not
exceed 145 volts or a differential input did not exceed +70 volts. In
order to obtain this precision, selected tubes were used.

3-13. Variable-gain Amplifiers and Modulators (& E:E).—Another
class of voltage-sensitive transmission constant devices is that employing
vacuum-tube amplifiers whose a-c gains are proportional to grid voltages.
The 6SK7, for example, has a plate-current grid-voltage curve that is
nearly parabolic over the range of grid voltage from —1 to —10 volts,
with e, = 250, and e, = 100, as is evident by a substantially linear

relationship between ¢, and e, in this region. For such a tube we may
write

I

ip = % + aey + bel,
and a1

Aty = (a + 2be,1) Aeyr + blhe,))

As is apparent from this expression, the gain for small signals of an
amplifying stage incorporating a 6SK7 used under these conditions may
be varied nearly linearly by adjustment of the d-e bias applied to the
grid, thus making possible the multiplication of an input a-c signal
applied to the grid of the tube by the magnitude of the increment in
d-c bias voltage also applied to the grid. As with the previous method,

i

1 See Sec. 6-4 for an application of this circuit.
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implying variation of the plate resistance of the vacuum tube, however,
this method is subject to considerable instability due to shift in the
operating point of the tube with changes in heater voltage.

There is another method employing a variable-gain tube that is
somewhat better with respect to variation with changing heater voltage.
If in the preceding expressions for the change in the output current
resulting from a change Ae in the grid voltage, we set

Aegy = Aey cos wit + Aer cos wal,
the result is

(Aey)?

Aty = (a + 2be,1){Aey cos wit + Aes cOs wol) + b {T (cos 2wt + 1)

+ Aerhe; [cos (0 + w)t + cos (wi — wo)t] + (—Aé—?)j (cos 2wet + 1)}. (12)

In this expression the amplitudes of the modulation products are directly
proportional to the products of the amplitudes of the input voltages and
the grid-cathode voltage does not enter these terms explicitly. This
means that variations in d-c bias, cathode temperatures, and the like
will be of less importance in determining the amplitudes of these modula-
tion products. If the output of such a stage is passed through a filter
transmitting only one of the sidebands, say that at angular frequency
(w; — wy), the output cbserved at this frequency will be proportional to
the product of the amplitudes of the input voltages at angular frequency
w; and ws, respectively. Computing devices utilizing this property of
the tube have been built and have operated with a precision of approxi-
mately 1 per cent.

There are available a wide range of circuits of the modulator type
that operate to give an a-c output that is the product of an input alter-
nating current and an input direct current. Much is available in the
literature on modulators,' and the subject has also been discussed else-
where in this series.?

Feedback techniques may be applied to a variable-gain amplifier to
cause it to amplify an a-c signal of some standard amplitude such that
this signal appears in the output at an amplitude equal to another signal
1, which is considered as a multiplier signal. This may be accomplished
by using the difference in amplitude between the amplified standard
signal and the multiplier signal e;, feeding back the difference at high
gain to control the amplification of the variable amplification stage
in such a direction as to reduce the difference to nearly zero. Under

! For bibliography see ¥. A. Petraglia, FElectronic Engineering Master Indexz,

Electronics Research Publishing Co., 1945, ¢ Modulation,” pp. 55, 207.
2 Vol. 19, Chap. 11, entitled ‘“Electrical Amplitude Modulation.”
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these conditions, the amplification of the stage is proportional to e;.
Any other signal ¢, fed to the variable-gain amplifier in the same manner
as the standard signal will then appear in the output with an amplitude
proportional to ewes. It is, of course, necessary that the standard signal
be separated from the signal e; being amplified. The device described
is a multiple-purpose element, since two different types of data (e: and
the standard signal) are used as inputs; any of the methods mentioned
in Sec. 12 may be used to separate these signals. In this case, separation
is easily achieved by using a-c signals at different frequencies for the
standard signal and the input e;. The tlock diagram of this device
would thus closely resemble that of the pulsed attenuator computer
(Fig. 3-13).

A multiplying circuit based on these principles has been developed
at Telecommunications Research Establishment and is discussed in
Vol. 19, Sec. 19-5. A similar method used in this country to linearize
the characteristics of a 6AS6 as a variable-gain amplifier achieved excel-
lent accuracies. It is to be hoped that details will be published in the
near future by the laboratory undertaking this development, as the
method holds considerable promise.

3-14. Special Nonlinear Methods of Multiplication. Methods.—
There are available a number of mathematical expressions by means of
which products can be computed through the use of other functions,
such as squares, differences, logarithms, trigonometric functions, etc.,
which are sometimes easier to instrument than more direct multiplica-
tion methods. Three of the most important of these equations are

zy = Hz + 9t = (z — v, (13)
log zy = log z + log v, (14)
and
zy = %[cos (@ — b) — cos (a + b)),
where (15)
x = sin q, y = sin b.

Nonlinear Elements.—Nonlinear elements suitable for use in applica-
tions of these methods are discussed in Chap. 5 and in Vol. 19, Chap.
19. A short list will be given, but the reader is referred to these
other sections for details and for more complete listings. Mechanical
nonlinear elements of importance are gears, cams, cone-cylinder combi-
nations, levers, etc. Electromechanical elements of importance are non-
linear potentiometers, loaded linear potentiometers, nonlinear condensers,
synchros and synchro-type resolvers, sine potentiometers, etc. Electronic

devices of interest are contact rectifiers, nonlinear resistors, vacuum
tubes, etc.
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3.15. Bridge Methods(Z’s:Z) or (6's:6).—Bridge techniques are fre-
auently very useful because they provide simple and accurate methods
of obtaining an output that is the product of two inputs divided by a third
input. Thus, in the bridge illustrated in Fig. 3-15, the output Z, is
given at balance by
Z1Z3.

Z4 = Z2

The bridge method, as illustrated in Fig. 3-15, has the disadvantage

that some balancing means, such
as a servo, is required. A prac-
tical consideration in the design
of such bridges is the adjustment
(E) of the slope of the various inputs.
The independence of variations of
the supply voltage E offered by
the bridge makes this method one
o - ——— of great stability and accuracy.
I1G. 3-15.*Usea(r>lfdb5;3iggof§r multiplication 3.16. Multiplication by the In-
tegration Method.—Bush and Cald-
well! have reported a method of multiplication that has been found
useful in connection with a differential analyzer. In this method the
product of two variables z and y is formed according to the equation

Ty = fxdy+fydx. (16)

Through the use of this equation, multiplication can be performed
by standard differential analyzer integrator elements with a very high
degree of precision. For discussion of integration techniques, the reader
is referred to Chap. 4. ‘

3-17. Miscellaneous Techniques and Devices (£,E:t) or (E(:E)—
Change of Slope of Waveform in Time-modulation Circuits.—Through
changes in the supply voltage, the slope of triangular waveforms used in
time-modulation devices may be varied with the sometimes useful and
sometimes objectionable result that the time modulation produced by
such a circuit changes inversely as the supply voltage when the ““ pick-off”’
or comparison voltage is independent of the supply voltage. Expressed
in another way, the voltage at any time ¢ after the initiation of the wave-
form varies directly with the supply voltage. Of course, in the usual
time-modulation circuits, the pick-off voltage is also derived from the

1V. Bush and S. Caldwell, “ A New Type of Differential Analyser,” Jour. Franklin
Inst., 240, 255-326, October 1945.
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same supply voltage as the triangular (linear sweep) waveform, and this
variation is canceled out with a high degree of accuracy.

Use of Variable-condenser Modulators to Multiply A-c Data by D-c
Data.—Variable-capacitance modulators are discussed in detail in Vol. 19,
are mentioned earlier in this chapter as voltage discriminators, and are also
referred to again in Chap. 15. As described above, the output of the
variable capacitance modulator is proportional to the amplitude of
mechanical vibrations and the applied d-¢ potential. By the use of an
extra electrode, a d-c standard, and a simple feedback circuit, the ampli-
tude of vibration may be made accurately proportional to an a-c input.
Under this condition, the resulting a-¢ output from other electrodes is
accurately proportional to the product of the a-c¢ input and the d-c
potentials connected to these electrodes. Linearity of modulation may
be extremely high, approximately 0.1 per cent. For high-accuracy
applications great precision is required in the construction of these
devices, and as a result they are difficult and expensive to make.

‘Field Current Control of Generator Voltage (w,I:E) or (w,E:E).—It has
been found useful to vary the volts per rpm scale factor of small a-c or
d-c generators by variation of field currents. For example, it may be
desirable in a velocity servo to maintain the velocity constant for any
given setting of a voltage divider connected to a reference potential.
If this is done by comparing with the voltage so derived a voltage from
a tachometer generator on the output shaft of the veloeity servo, varia-
tions in speed will result when the supply voltage changes if the tachom-
eter scale factor is not changed at the same time. It is possible,
although not often practical, to control the tachometer in this case by
controlling its field in such a manner that the field current is proportional
to the supply voltage. The practical difficulties in this case are due to
the copper resistivity temperature coefficient and to hysteresis effects.

A device that also provides an output voltage accurately proportional
to speed and input voltage is the condenser tachometer described in
Chap. 4 in connection with integration servos.

Electrodynamometer Multiplier (I's:I).—The electrodynamometer
multiplier has been described or proposed by a number of authors.!
In a typical instrument, two coils are mounted concentrically with one
coil free to turn about an axis in the plane of both coils. When current
is passed through both coils, a torque tending to produce relative rota-

1]). 8. Allen, “An Electromechanical Calculator,” RL Internal Report No. 62,
Jan. 26, 1943; H. 8. SBack, Cornell University,  Memorandum on a Computer Based
on the Electrodynamometer Principle,” July 14, 1945 (unpublished memorandum);
V. Bush, F. D. Gage, and H. R. Stewart, ‘“ A Continuous Integraph,” Jour. Franklin
Inst., 208, 63 (1927); R. N. Varney, “An All Electric Integrator for Solving Differen-
tial Equations,” Rev. Sci. Inst., 13, 10 (1942).
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tion of the coils is produced, the torque being proportional to the product
of the current in each o the two coils, as in an electrodynamic voltmeter.
In the electrodynamometer-type multiplier there is provided a second
movable coil and a constant magnetic field produced by a coil with fixed
current or by a permanent magnet. By passing a current through
the second movable coil, a torque that is equal to and oppositely directed
from that produced by the first two coils may be produced, which allows
operation as a null device. It is seen that the current required in the
second movable coil in order to bring the moving coil system to a null
is proportional to the product of the currents in the first moving coil
and the first fixed coil. A suitable means for detecting small angular
motions of the shaft carrying the moving coils must be provided in order
to actuate a feedback amplifier supplying current to the second moving
coil in order to restore the shaft to its null position. A number of devices
suitable for use as shaft position error indicators are proposed in the
references, and in addition several of the low-torque data input devices
discussed in the first part of Chap. 12 may be used. The instrument,
although not at present fully developed, promises to be light, compact,
accurate, and practieal.

Multiplication and Division Based on Ohm’s Law (E,Z:E) or (E,Z:I) —
The Ohm’s law dividing circuit is a simple and reliable circuit which
deserves to be used more often than it is. Its field of application is
limited to those cases where the divisor has only one
sign and does not go to zero. Because there are so
many applications where it is unsuitable owing to
these limitations, designers are apt to {orget about
it for applications where it is entirely suitable. In
this circuit, as illustrated in Fig. 3-16, the resistance
Ry + R, is made proportional to one input y, while
the voltage ¢ applied across the two resistors is
made proportional to another input x. The current
through the resistors is then proportional to x/y and

€= Re-flR may be measured as a voltage by taking the voltage
Fra 3_161_02}1"1,5 drop across resistor R;. The minimum value of
‘law divider. y 1s proportional to the resistor R;. Since the

impedance of this network is variable, the voltage
e must be supplied from a low-impedance source or at least measured
after R, has been adjusted so that R; 4+ R, is proportional to y. This
circuit has been used in an airborne navigation computer to compute the
time required to fly a given distance at a given speed by making the volt-
age e proportional to the distance and the resistance R; + R, proportional
to the speed, taking the voltage across R, as the time required to cover
the given distance.
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The Time Coincidence Multiplier (I’s:I).—A clever method of multi-
plying devised by A. C. Hardy of Massachusetts Institute of Technology
is based on the fact that if several events occur each with a random dis-
tribution in time, the probability of a simultaneous occurrence of all of
them is proportional to the product of their separate probabilities of
occurrence at any given instant. A circuit embodying a similar prin-
ciple uses repetitive rectangular waveforms whose periods have no
common divisor. Under these conditions, the various separate events
certainly do not occur randomly with time, but the fraction of the time
that coincidence between the positive portions of all waveforms may be
observed is very nearly the same as that which would be observed were
all events truly random, particularly if the time interval over which
observations are averaged is long compared with the repetition intervals
of the rectangular pulses and if the frequencies have been judicicusly
chosen. A tube is adjusted so that it will be turned on only during the
time when all input waveforms are positive, with the result that the
average current drawn by the tube is closely proportional to the product
of the input waveform duty cycles, each of which is made proportional
to one of the inputs. An application of this method to the solution of
simultaneous equations is discussed in. Sec. 6-2. For further details of
this circuit, reference is made to Vol. 19, Sec. 19-5.

Computers using this principle have been built with accuracies of
the order of 1 to 4 per cent. Since the method does not depend critically
upon the characteristics of vacuum tubes or nonlinear elements, there
appears to be no fundamental reason why this accuracy could not be
improved if necessary.

Miscellaneous Mechanical Methods (S or 0:S or ).—A variety of purely
mechanical methods of multiplication are available. Fry! has sum-
marized most of these methods. Other references of interest are a
U. S. Navy Department pamphlet,? a book by Lipka,? and Vol. 27 of this
series.

The most common mechanical multipliers include logarithmic cams,
gears, and tape wheels; mechanical models of two similar triangles, rela-
tive sizes being adjusted by one input variable and length of one side
being adjusted by the other input variable; ‘“sector multipliers’ in which
aradius and angle are each adjusted by an input variable, giving a motion
proportional to their product over a limited range; the so called ““ Vari-
gear”’ positive-drive variable-gear ratio device; space cams; linkage

M. Fry, “Designing Computing Mechanisms,” Machine Design, August 1945
through February 1946.

2 “Bagsic Fire Control Mechanisms,” Bur. Ordnance Pamphlet 1140, U.S. Navy
Dept., Ford Instrument Co., and Arma Corp.

3 J. Lipka, Graphical and Mechanical Computation, Wiley, New York, 1918.
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multipliers, etc. For further details and more methods the references
given above should be consulted.

IDENTITY OPERATIONS

By an identity operation is meant an operation that does not change
the mathematical quantity represented. The principal examples are
change of level, change of impedance, change of scale factor, and change of
data representation. Identity operations are most commonly used in
connecting together blocks performing more complicated operations

€; -
O—
—150
(a) Eyy=250v
100k | . 200 to 220v
M 100k [ 2,
e IM 0.1M
b 65L7 +90v
0 to 20
(¢) 100k

Fi16. 3-17.—Examples of circuits for changing d-c¢ voltage levels.

such as multiplication, addition, and squaring. The identity operation
of transformation of data representation, for example, allows a block
operating on one form of data to be connected to a block operating on a
different form of data. In general, it may be said that through the use
of identity operations, greater over-all computer effectiveness can be
achieved, for the increase in effectiveness of the various other operations
will usually more than make up for the complexity of the added identity
operation.

3-18. Change of Voltage Level.—Most of the techniques required for
changes of voltage level will be found under the discussions of addition
and subtraction devices. Circuits shown in Fig. 3-17a, b, and ¢ are
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examples of level-changing circuits. Figure 3-17¢ illustrates a method
commonly used in direct-coupled amplifiers to obta n signals at the cor-
rect level with respect to ground for use as inputs to the following stage.
The differential voltage output is only Rs/(R; + R.) times that available
at the plate, but a net over-all stage gain results, and both input and
output are at the same level. Figure 3:17b, a regulator tube or neon
glow tube, characterized by a nearly constant voltage drop over a range
of current, is used to obtain a voltage e, at a level that is suitable for use
as an input for the following stage. A very simple level-changing device
is a dry battery. Batteries are bulky, must be replaced frequently,
generally cannot be used at very high temperatures satisfactorily, and
have large voltage temperature coefficients but are used freely in labora-
tories and elsewhere where these limitations are relatively unimportant.

In Fig. 3-17¢ is shown a circuit in which the output is 200 volts higher
than the input, the input covering the range of 0 to 20 volts and the out-
put covering the range 200 to 220 volts. The accuracy of this circuit is
approximately 50 mv for the range indicated. The circuit may cover
larger anges with reduced accuracy.

3-19. Change of Impedance.—Change of impedance is accomplished
through the use of networks and/or the use of feedback. These sub-
jects are discussed in great detail in the existing literature and elsewhere
in this series. For standard network methods, reference is made to
Terman.! For feedback theory and examples of the application of feed-
back techniques to the problem of changing impedance, reference is
made to Vol 18, and a recent book by Bode.?

3:20. Change of Scale.—Change of scale means multiplication of the
data at any point by a fixed quantity. The methods discussed above
under multiplication and division therefore are applicable to this problem;
but since freedom to vary both inputs as in multiplication is not required
for this application, most of the devices mentioned above are unneces-
sarily complex for this usage. Where the factor is less than one, simple
resistive, capacitative, or inductive divider networks will often suffice.
Where any impedance must be maintained, a matching T- or m-network
may be used. Where the constant of multiplication is greater than one,
amplifiers may be used whose gains are accurate. Transformers may also
be useful if the distortions and changes in gain with temperature intro-
duced by the transformers are not objectionable. References for the
design of matching networks and feedback amplifiers are given in the
preceding section.

1F. E. Terman, Radio Engineers’ Handbook, McGraw-Hill, New York, 1943, Sec.
3, par. 25.

tH. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York, 1945
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3-21. Change of Representation.—One of the most important identity
operations is the change of representation. An introduction to the sub-
ject*is found in Sec. 12-2, together with a short list of some of the more
important representations of data used in electronic and electromechan-
ical computers.

It is usually true that & computer can be most effective if freedom is
allowed the designer in selecting methods and devices for performing the
various isolated and grouped operations on the input data. It is obvious
that the freedom of representation contributes greatly to the freedom of
selection of the best method and device for any operation. For example,
suppose that the inputs to a proposed computer are mechanical shaft
rotations. It would be imposing unnecessary restrictions on the designer
to say that throughout the computer data must be carried along as
shaft rotations. A far simpler computer might be made through the
use of a simple device performing the identity operation from the repre-
sentation of data as shaft rotation to the representation of data as an
electrical potential (as by a potentiometer), followed by electrical devices
performing the necessary operations on the electrical data.

An exhaustive treatment of the subject of the identity operation
would probably include a detailed discussion of the devices and methods
available for passing from any data representation to any other. Con-
sidering only those 17 representations most used in electronic and elec-
tromechanical computerst it is seen that (17)%, or 289, categories of
devices would have to be discussed, with more than one device in some
if not all categories. Such a compendium is not possible here.

1t is suggested, however, that the serious worker in the field start his
own collection of methods for changes of representation, beginning the
collection with changes between the representations most frequently
encountered in the type of computers with which he is concerned. The
worker in the hydraulic control field will certainly wish to add such
variables as volume, flow, et¢., to those given above and in all probability
can also subtract several from this list as of little practical importance in
his field. A discussion of changes of representation useful in passing
data into and from an electronic ecomputer will be found in Chap. 12.
While the devices of Chap. 12 are treated from the standpoint of data
input and output devices for servomechanisms, in most cases the devices
are suitable for use also in electronic computers, where servomechanisms
may or may not be involved.

* See also H. Ziebolz, Relay Devices and Their Applications to the Solution of Mathe-
matical Equations, Askania Regulator Co., Chicago, 1940.

t Force; pressure; torque; translational and rotational displacement, velocity, and
acceleration; voltage, current, charge, impedance, frequency, phase, count, and time
interval.
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Two comments on the use of a change of representation table may
be of interest. If the desired device for going from a first given represen-
tation to a second given representation is not available or is unsuitable,
the change may be made by going to a third representation and then
from the third to the second given representation. This is usually
impractical, but there are occasional situations where the extra step is
justified. A second alternative also exists when the desired device
converting from a first given representation to a second given representa-
tion is not available or is unsuitable. This alternative is the use of a
device converting from the second representation to the first representa-
tion, with a feedback loop controlling the data in the second representa-
tion on the basis of an ‘‘error’’ signal obtained in the first representation.
This will be found to be a useful method for those cases where direct
conversion methods do not apply.



CHAPTER 4
CALCULUS

By J. W. Gray

4.1, Introduction.—In electronic instruments the need occasionally
arises for the differentiation or integration of some quantity with respect
to an independent variable. Time is usually the independent variable,
and this case will receive most of the attention here. For both differen-
tiation and integration with respect to time, the most common methods
used are those employing either a condenser-resistor combination or an
electromechanical tachometer. The choice between these two classes
in a given application is usually indicated by the nature of the inputs
and outputs, but the choice of specific components and circuits requires
considerable knowledge and judgment.

Although it is not the purpose of this chapter to embrace all possible
forms of the operation of calculus, a few simple methods will be deseribed
in addition to time-differentiation integration, including integration
and differentiation with respect to a dimension other than time.

DIFFERENTIATION

4-2. RC-circuits. Simple RC-differentiators.—The time derivative
of a voltage can be obtained directly as a current if a condenser is charged
from the voltage source:

. de

i =0C -Ji (1)
With ordinary sizes of condensers, the current obtained is so small
as to be useless as a terminal output except

0——{(0 O when very rapid voltage changes are meas-
e R € ured. The current must generally be con-

verted to the form of a voltage by the use of
o —O g resistance. In Fig. 4-1 if the input e, is

Fi1a. 4-1.—Simple RC-differenti-

. changing at a uniform rate and has been

doing so for a time sufficient for the current
through C and R to become constant, it follows from Eq. (1) that the
output voltage is

e, = RC T 2

Thus, the larger the RC product the greater will be the output for a
given input rate. But also, the larger RC is the more noticeable will be
' 64
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the effects of higher derivatives of the input. For example, if de,/d¢
has been constant at some value and then suddenly changes to some new
constant value, e, does not jump immediately to the correct new value
of RC(de,/dt) but rather approaches it exponentially with a decay time
constant of RC. In Fig. 4-2, de,/dt suddenly increases from zero to a
constant value (the level of e, itself is, of course, immaterial), and there-
after the output follows the curve
¢
e = (1 — ¢ FORC %‘ 3)
Thus if RC were doubled, the eventual output would be doubled, but
so, also, would the time required to reach this asymptote.
For correct operation, then, RC must be small enough that considering
the nature of e,, the error in the output following any change of the input
rate will be of negligible amount and duration. The obvious solution

s c
0—" Amp. O
i P €o

1
Fic. 4.2.—Effect of transient on simple Fic. 4-3.—Feedback amplifier type of
R( differentiation. differentiator.

is to use a small RC and then to amplify the output to sufficient propor-
tions for the application. There are instances where this method is
practical. The amplifier in such a method must usually be of the modu-
lator type rather than direct-coupled, because of the amount of drift
encountered in the latter type. With direct-coupled circuits, this drift
is amplified. In the feedback method described below, it is not.

Feedback Amplifier RC-differentiator.—The undesirable transient
effects in Fig. 4-2 stem from the fact that not all of the signal appears
across the condenser; it is apportioned between this and the resistor.
This would not be so, if the junction point between R and C could be
held at constant potential by a monitoring device that would extract no
current therefrom. This monitoring device can be a d-c amplifier. In
Fig. 43 the amplifier shown inverts (i.e., e, drops in potential if ¢, rises),
takes no input current, and has an operating output range that encom-
passes the input level.

If it is assumed that the amplifier ha- infinite gain, so that ez must

be constant as long as ¢, is within its us .1 range, the condenser current
will be

. de,
1 = ’a‘z; (4)
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and the output is therefore
e, = e, — It

de,
= ¢, — RC ‘aet"’ ®
or, if e, is at the reference level,
des
e, = —RC TR (6)

If the input rate changes, e, tends to change, which causes ¢, to move
immediately to counteract this. Thus there is no lag, and the operation
is described by Eq. (6) regardless of higher input derivatives.

If the gain of the amplifier is some finite amount G; it is possible to
show that the differentiator responds to the type of change shown in
Fig. 4-2 as follows:

e, = — GG% (1 — g@+nerey %ﬁ (7)
Comparing this with Eq. (3), the asymptote, except for the minus sign,
is almost the same (only 1/G less), and yet the time constant of approach
to the asymptote is only RC/(G + 1) instead of RC.

If the input rate is so great that the amplifier saturates before e, can
reach the required amount, ¢, will no longer be held in place by the output
action, and the device may thus be incapacitated for an appreciable
time. For example, if a true step function is fed in (de,/dt = ),
the grid will follow the step. The amplifier output will jump to the end
of its range, and the grid will then move back at a rate equal to this value
divided by RC. When it has come back an amount equal to the step,
normal operation will be resumed. If the step is positive, grid current
may be drawn, which would help charge the condenser and limit the
movement at the grid. It is also possible to supplement this effect in
the negative direction by the use of a diode. Another method of rapidly
restoring the grid voltage employs a relay, which is actuated by the
output and operates to shunt R with a low resistance when the output
becomes excessive in either direction.

The use of a high-gain amplifier in Fig, 4-3 may result in oscillation.
The effect may be analyzed according to ordinary feedback theory by
considering the input terminal fixed. The condition may be remedied
by the insertion of a small resistor in series with the condenser or by
shunting the resistor with a small condenser or both. This comprises
a ‘“‘phase-lead’’ circuit, which permits a fluctuation of e, to act on ¢,
immediately to cancel itself, rather than in a retarded fashion with R
and C acting as a filter. If a series resistor of value nR is used or a
shunt capacitor of value nC, the effect is the same. Assuming an
infinite-gain amplifier, the output is now somewhat imperfect, having a
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response to the sudden application of input rate of

eo = —(1 — ense) RC 22 ®)
dt

This is much the same effect as finiteness of gain, n being comparable

in its effects to the factor 1/(G + 1).

In some applications it may be that the RC needed to obtain the
required output voltage is so large as to be impractical of realization.
The output may be increased by using only a fraction of it in the feed-
back. If the amplifier of Fig. 4-4 is assumed to have infinite gain, the
output is

_ R+ R, des.

€ = R RC T (9)

If B, and R, are not negligible in comparison with &, their parallel resist-
ance simply adds to R.

C

0——{ Amp. |

€5 €
R R

Fia. 4-4.—Increase of output by attenuation of feedback.

The zero drift of the circuit of Fig. 43 is just the drift of the amplifier
as measured at its input, which is generally quite small in comparison
with the available output.!

Care is needed in the design of the first stage of the amplifier to ensure
sufficient plate voltage that there is no danger of positive grid current.?
Even so, there will be a amall amount of negative grid current (positive-
ion flow). By proper choice aof the tube type this may be kept fairly
low; and if tube selection is permissible, it can be much lower. If this
current is constant throughout the operating range, it does not impair
the precision, since it produces only a small constant-voltage drop across
R, which can be accounted for by the zero adjustment in the amplifier.
This may be the case if the amplifier has much gain after the first tube,
since this tube will then suffer little change of plate voltage and current.

The ¢, point in the circuit is also susceptible to other leakage currents,
particularly neighboring high potentials such as the plate lead of the
tube. If moisture is & danger, it may be advisable to shield this point

' Vol. 18.
3 [bid.
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completely and to connect the shield to a low impedance at the same
potential as e,.

The amplifier output can be at any impedance, depending on the
expected external load; for example, an output cathode follower might
be used, its nonlinearity and drift being of no consequence if the feedback
through R is from its output. The voltage range of the feedback point
must extend below ¢, by an amount depending on the maximum positive
input rate. This is an unusual and troublesome specification for a
direct-coupled amplifier. The output has the opposite sign from the
input rate. If thisis undesirable, a differential amplifier may be used as
the output stage, with the output from one plate and the feedback from
the other, or a simple paraphase triode may be emploved, with appro-
priate plate and cathode resistors.!

Since the operation of the differentiator depends on the RC product,
these components must be selected so that this product, will be constant,
within allowable precision limits, throughout variations of operating
conditions such as temperature. One must also take account of con-
denser leakage, which depends on e, — e,.

Another important consideration in the choice of condenser is the
fact that most condensers are more or less susceptible to the “soaking”’
or “absorption’’ phenomenon, which causes them to depart from behavior
as ideal condensers. It concerns the inability of a condenser to accept
or deliver its entire charge immediately and seems to result from non-
homogeneity of the dielectric. In any event, homogeneous condensers
(e.g., polystyrene) exhibit very little of the effect.? A simple test is to
charge a condenser at a certain voltage for several minutes, discharge it
momentarily, and record its subsequent voltage (measured intermittently
with a cathode follower so as not to cause discharge). It will rise more
or less exponentially to some fraction of the initial charge before decaying
downward at its leakage rate. Conversely, if it is solidly discharged
for several minutes and connected momentarily to the voltage source,
its voltage will drop rapidly for a while before decaying at the normal
rate. Figure 4-5a shows these voltage-time curves for a typical 4 uf
600-volt filter condenser. The effect amounts to over 40 per cent in
magnitude with a time constant of about 30 sec. This aberration can be
approximated for purposes of calculation by a combination as in Fig.
4-5b. In the case of Fig. 4-5a, C’ would be almost equal to C, causing
the slow redistribution of the momentary charge or discharge as shown
by the curves. The value of R’ is such that the time constant of the
loop is about 30 sec. Such a condenser would obviously be inappropriate

1 Ibid.

2 J. R. Weeks, ‘“Development of Polystyrene Condensers,” Elec. Mfg., April 1946,
p. 146.
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Fie. 4-5.—(a) ‘‘Soaking’ effect in a representative 4-uf 600-volt filter condenser.
The upper curve is for the condenser completely discharged, then charged 1 sec at 45 volts,
then open-circuited. The lower curve is for the condenser charged to 45 volts for 10 min,
then shorted 1 sec, then disconnected. (b) Equivalent cireuit for condenser exhibiting
soaking effect.
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FiG. 4-6.—Example of feedback amplifier type of RC-differentiator.
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for use in a differentiating circuit, especially if the differentiating resist-
ance R were of the same order of magnitude as the soaking resistance R’.

Figure 4-6 is an example of the type of circuit of Fig. 4-4 where the
feedback is attenuated to give greater output for a low input rate. The
value of C is 1 pf; R is 5 megohms; R, is 5 megohms; and R is the parallel
sum of 500 k and 250 k, or 167 k. Equation (9) gives

(5 + 0.167)(1)(5) de,
bo = ©0.167) (10)
des
= —155 "
The bottom of R; is connected, in effect, to —100 volts rather than
to ground as in Fig. 4-4. Since (R; + R.)/R,
is 31, this allows ¢, to be at about —97 volts,
whereas the output e, 1s at ground level when
de,/dt = 0, a trick that simplifies the amplifier
design. The input 6SL7 triode is operated at
K 1 ma and about 95 volts plate to cathode,
7] ensuring minimum grid current. The differ-
ential amplifier input provides a convenient
:[:c zero adjustment, balances the heater voltage
variation effect, and permits the required over-
Fio. 4.7.-Cathode-follower ~ all voltage inversion with twostages. The out-
differentiator. put is from a cathode follower. It is designed
for only positive outputs, as this particular circuit was designed for an
application where only negative input rates were of interest.
Cathode-follower Type RC-differentiator.—
For the differentiation of a voltage whose posi-
tive rates only are to be measured and whose
excursions are somewhat limited in magnitude,
an arrangement like that of Fig. 47 may be
convenient. It has the advantages of simpli-
city and zero loading of the input. The opera-
tion is obvious: If e, is rising, exis forced to rise
u/(u + 1) as fast, and the resulting charging
current for the condenser produces an output
voltage across the plate resistor. The scale fac-~ IC
tor relatmg output to-mput rate is #RQ/(“ +1). Fro. 48— Cathode.
The transient following a change of input rate follower differentiator using
has a time constant of only (R 4+ r,)C/(u + 1), sz;;‘;}‘ie with separate screen
where 7, is plate resistance.
It a pentode is used, with a separate power supply to hold constant
screen-cathode voltage as in Fig. 4-8, the above scale factor becomes RC,
and the transient time constant is only C/gn.

Epp
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If the screen-cathode potential is maintained constant by means of a
d-¢ “boot strap’’ device, the screen current will flow in C along with the
plate current, so the drop across R will be reduced according to their

B+

FiG. 4-9.—Method of lowering ex.
ratio. If the screen is at a fixed potential so the screen-cathode voltage
varies with e, the action is more like that of the triode, except for'the
loss caused by screen current and the fact that plate current is not affected

by the drop across . The fact that the ratio
of screen to plate current may vary can make
the pentode less accurate than the triode
unless the device of Fig. 4-8 is employed.

Grid current is not permissible, and this
determines the upper limit for ¢,, Heater-
cathode leakage can cause a large error, and
it may be necessary to use a floating heater
supply.

Some method of lowering e: is needed,
since the grid is unable to do it. This may
be done with a diode or a diode and cathode
follower as in Fig. 49. Of course, no useful
output is obtained while ¢, is descending.

The differentiator can be made to give
both negative and positive derivatives by
the use of a constant-current device parallel-
ing the condenser as in Fig. 4-10. If I is
constant, the output voltage will be reduced
by RI. If I varies slightly with ex, e, will

B+

B_

Fic. 4-10.—Cathode-fol-
lower differentiator with con-
stant-current tube.

depend to a small extent on e,. 'This may or may not be objectionable,
depending on the requirements of a given application.

If the output voltage can be in the form of a potential difference
between two terminals rather than a single voltage, the output of the
circuit of Fig. 4-10 may be balanced against that of a similar circuit
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without the condenser to eliminate the dependence of output on input
magnitude. This mayv even permit, in some cases, the use of an ordi-
nary resistor in place of the con-
stant-current device, as shown in
Fig. 4-11.

4.3. Condenser Circuits Em-
ploying Special Current Ampli-
fiers.—There are certain types of
feedback amplifiers, employing
special devices other than vacuum
tubes, that can amplify very small
currents to give large currents or
voltages with good linearity and
stability. One of these employs
a pair of magnetic toroids, whose
saturation effects develop even
Fic. 4-11.-Balanced.cathode-follower differ- hgrmonid¢s of a carrier voltage

entiator. when a small d-¢ unbalance is
applied. Another type uses a mirror galvanometer and photocell, with
current feedback from a d-c amplifier to eancel out the galvanometer
current. Either of these or an equivalent device may be used with a
condenser as a differentiator, by amplification of the condenser charging
current.

The above magnetic amplifier is described in Sec. 3-10. A differen-
tiator employing an amplifier of this type has been found to be linear
and stable to about 1 per cent with input rates ranging from —1 to
41 volt/sec. One advantage of this type of differentiator over the
type illustrated in Fig. 4-3 is the rapid recovery from the saturating
effect of a step function or other temporarily rapid input rate.

A galvanometer photocell amplifier having very good stability and
linearity with a full-scale input of 1 pa is described in Volume 18. With
a suitable condenser input it would be very satisfactory as a differ-
entiator, although perhaps somewhat limited as to portability.

In these differentiators a resistance must be used to derive a voltage
from the condenser current if the output is desired as a voltage. Thus,
the RC product determines the relation between rate in and voltage out,
and the remarks about this in the preceding section still apply. Also,
of course, the condenser should not have excessive leakage or ““soaking.”

4-4. Differentiation Based on Inductance.—An inductor can be used
as a differentiating device if the functions of voltage and current in
Eq. (1) are interchanged.

di

e=1L i (11)
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The IL-circuit corresponding to Tig. 41 is shown in Fig. 4-12. The
response to a transient input as in Fig. 4:2 is

L de,

e = (1 — Cemr) 22

(12)

Thus, in contrast to the RC devices, the output may be increased by

decreasing .
R .
oWV o
Amp. €

Fig. 4-12.—8imple RL-differentiator. Fra. 4-13—TFeedback amplifier type of
RL-differentiator.

All the differentiators deseribed in the preceding section may be
made RL devices by replacing I with' L and € with R, except that those
employing special current amplifiers must use the equivalent voltage
amplifiers instead. Figure 4-13 shows the RL equivalent of Fig. 43.

B+
R
B+
L
L
€p O _—
eg eg
R R
B— B~
Fia.  4-14—Cathode~follower RL-differ- Fic. 4-15.—Compensation of coil resistance.
entiator.

All the discussion of the latter applies here also, with the above substitu-
tion. Figure 4-14 is the RL cathode-follower type of differentiator.
This has the advantage over the RC type that no constant-current device
is needed to make it operable with negative input rates. When the
current is decreasing, ¢, can actually rise above B+
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One big disadvantage of these circuits in comparison with their RC
equivalents is the result of the large amount of resistance in the inductor.
This causes the output to shift with the input magnitude according to
the ratio of this coil resistance to E. Of course, the same effect obtains
in the case of the RC-differentiators, due to condenser leakage, but this
can be of a different order of magnitude. If the output may be in the
form of a potential difference, a circuit like that of Fig. 4:15 may be
employed to cancel this effect. Saturation of an iron-core inductor is

B+ perhaps the worst disadvantage. This results
in the change with input voltage of the pro-
portionality factor between input rate and
output voltage. It is as though in the RC-
differentiator, C were a function of the voltage
across it.

Hysteresis makes the output characteristic a
function of the preceding operation of the device.
It is similar tq the effects of a ‘“soakable”
condenser.

Second-order differentiation may be accom-
plished by the use of both a condenser and an

I=Constant inductor. For example, a cathode-follower cir-
Fie. 416.—LC double differ-  cuit with a condenser at the cathode and an

entiator. inductor at the plate as in Fig. 4-16 gives an
output approximately LC times the second derivative of the input.

4.5. Electrical Tachometers. FElectromagnetic Generators.—The fore-
going types of differentiators are for obtaining the time derivative of a
voltage, a quantity that has obvious limitations as to its excursion.
When the derivative of a mechanical displacement or rotation is desired
and the amount of displacement or rotation is limited, these differentiators
could be made applicable by first converting the displacement into a
voltage by means of a potentiometer. Often a rotation will have no
limits but can continue indefinitely in either direction and with any speed.
In this case the speed, i.e., the time derivative of displacement, may be
obtained as a voltage by means of a generator. The characteristics of
many examples of tachometer generators are given in detail in the
Components Handbook, Vol. 17, so the discussion here is brief and in
general terms.

The most common kind of tachometer generator in electronic instru-
ments is the permanent-magnet d-c¢ type. Suitable small generators are
available with proportionality factors ranging up to 10 or 12 volts per
thousand rpm. Special features of construction are required in a gen-
erator for tachometer use! in order to obtain good linearity, stability,

1 G. Russell, “The Linearity of the Voltage/Speed Characteristics of Small D-¢
Generators,” TRE Report No. T-1999.

!
;
;
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absence of brush bounce, and equal output in opposite directions of
rotation. Commutator ripple must be minimized for many applications.
Commutator wear is troublesome, and commutation at high altitudes
and low temperatures presents difficulties. Permanent-magnet mate-
rial has a high negative temperature coefficient, but the effect of this on
the proportionality factor may be greatly reduced by means of magnetic
shunts of special materials and by temperature compensation elsewhere
in circuits in which the tachometers are used. Current loading must be
quite small in comparison with that expected from a power generator
of the same size; otherwise linearity will suffer.

Electromagnet fields are used in some tachometer generators instead
of permanent-magnet fields. This affords a convenient control of the
slope factor, which is sometimes useful. The temperature coefficient of

E +E E

——

CLoES
;L?

= = =

(a) (b) (¢)

F1G. 4-17.—Condenser tachometer arrangements.

the field is much smaller than that of a permanent magnet as long as the
exciting current is constant, but the resistance of any practical field
winding has a very high temperature coefficient (over ten times that of
a permanent magnet), so a special means must be provided to maintain
constant field current.! Also, hysteresis of the iron will produce incon-
sistency if the field current even momentarily rises above the assigned
value.

An a-c generator has all the advantages of no commutation, but the
generated frequency usually varies along with the voltage, and this may
limit the application considerably as to range of speeds. There is a
type of induction generator, however, in which the frequency is fixed by
an impressed a-c voltage. The rotor is (most commonly) a drag cup,
and the carrier and output windings are in space quadrature on the
stator. Output voltage is proportional to the product of input carrier
and speed, but it is also proportional to the conductivity of the rotor,
which makes for a high temperature coefficient. The phase of the out-
put relative to the carrier is affected by speed, and there is some distorted

* For a constant-current circuit see Vol. 18.
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output at zero speed which is affected by rotor position and is due prin-
cipally to imperfections of the rotor. The output voltage is much less
than that obtainable from the other types.

Commutated Condenser Tachometers—If a condenser is repeatedly
charged to one potential and discharged to another through a current-
measuring device, the pulses of charge comprise a current whose d-c
component is proportional to the rate of the operation. Thus, if the
repeated charging and discharging is done by a switch or commutator
on a shaft, the average current is a measure of the time derivative of
rotation. In Fig. 4-17a the ammeter will give an indication proportional
to the speed of switching:

1t = CEn, (13)

where n is the number of switching cycles per second. However, there is
no indication of the direction of rotation. Sense of direction may be
obtained by the use of more complicated switching sequences or com-
mutation, as illustrated in Fig. 4-17b and c.

If the current is measured by means of a resistance that develops a
voltage, the output will be linear only as long as the voltage output is
negligible compared with E. The output curve is actually exponential,
leveling off asymptotically as the output approaches E. To obviate
this difficulty, a feedback amplifier may be employed as with RC voltage
differentiation. The operation of this type of circuit is rendered difficult
by the pulse nature of the current; filtering is required, and at very low
speeds the output is erratic.

Although these devices are fundamentally differentiators, their com-
mon application is as part of an integrator. More will be said about
them under that heading.

4.6. Mechanical Differentiators.—This section is limited to a brief
mention of some of the types of mechanical differentiators that might be
used as auxiliary devices in apparatus that is primarily electronic.

Drag-type Differentiator.—These differentiators, of which a common
example is the automobile speedometer, give a mechanical displacement,
output proportional to the rate of the mechanical input. The output
is coupled to the input through a medium such as a viscous fluid or a
magnetic eddy-current device so that the force or torque exerted through
the coupling is a function of the difference in velocity between input and
output. The output is constrained to relatively small excursions by a
spring. Ideally, the spring obeys Hooke's law, and the coupling is such
that the torque is proportional to the velocity. Under these conditions,
the displacement of the output is proportional to the velocity. A metal
disk or drag cup revolving in a magnetic field gives a fairly linear torque-
velocity characteristic. If the torque is nonlinear, the spring may be
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designed in such a way as to cancel this nonlinearity, yielding an output
displacement linear with respect to input rate.

The response to higher derivatives is similar to that of the simple RC
voltage differentiator. For example, if the input rate changes abruptly,
the output moves exponentially (if the inertia is negligible) to its new
value, as in Fig. 42, with a time constant equal to the proportionality
factor between output displacement and input rate.

Gyroscope.—A spinning mass may be rotated about an axis perpendicu-
lar to its axis of spin if it is constrained not to rotate about the axis per-
pendicular to both of these, but it will
exert a torque against the constraint ty
proportional to the speed at which it Differentiat
is being rotated. Thus, if the con-
straining torque is obtained from a

spring that allows a small amount of = ﬁ de
deflection, the deflection is a measure !

of speed and may be made available 1T

as an output in any of several ways, as p

in the foregoing paragraphs. This £ N N B

deflection may be several degrees
without appreciably affecting line-
arity, since cos « is very nearly unity ! ,
when o is small. Spin velocity must L__ Clinder
be constant, since the torque is also
proportional to it. Very slow rota- Fia. 4-18.—Bail-and-disk integrator as
tional speeds can be measured quite a differentiator.
accurately by this method. A common application of the method is the
rate-of-turn meter in aireraft.

Accelerometers.—A second time derivative may be obtained by the
use of a spring and a mass.! If the mass is accelerated, the acceler-
ating force is proportional to acceleration; and if this force is applied
through a spring, a deflection results that is proportional to acceleration.
This principle can be applied to measure the second derivative of either
translational or rotational motion. Any of several types of pick-off
may be used for the output, as above.

Ball-and-disk Differentiator —The ball-and-disk integrator, which is
described under that heading, can be used with feedback to obtain the
derivative of one motion with respect to another. In Fig. 4-18, one of
the motions z drives the disk, and the other y is compared with the cylinder
output by means of a differential, the difference, or error, being used to
position the ball. The cylinder output is (r/a) dz, where r is the position

! See, for example, C. 8. Draper and W. Wrigley, *“ An Instrument For Measuring
Low Frequency Accelerations in Flight,” Jour. Aero. Sci., 7, 388-401, July 1940.

Disk —*
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of the ball and a is a multiplier depending on dimensions. If r is static al
its correct value, the output rate is equal to the rate of y, sody = (r/a) dx
or a dy/dx = r, so that the position of the ball is a measure of the deriva-
tive of one input with respect to the other. If r is incorrect, the differ-
ential will act to correct it. In this case, the equation at the differential
is

dr =g (dy — gdx), (14)

where g is the mechanical amplification in positioning the ball. If
dy/dx has been zero and changes to some constant amount, r will approach
its correct position according to the exponential formula

-2 dy
r=(1—e )a% (15)
The detection of the error and control of r might be done better by elec-
trical or other more elaborate means, so as to increase g and decrease
loading of the integrator.

INTEGRATION

4-7. RC Integrating Circuits. Simple RC Integrator.—A condenser
alone will give the time integral of a current in the form of a voltage

e=g / i dt. (16)

But an input is seldom obtainable directly in the form of a current. A
voltage input may be converted to a charging
O_/V}Q/VTO current for the condenser by means of a resistance,
€s cT % asin Fig. 419. But since e, is divided between
o O ! R and C, if the voltage e, across C becomes an
Fic. 4-19.—Simple RC inte- gnpreciable part of e,, 7 will not be an accurate
grating circuit.
measure of e,.

If the input rises suddenly from zero to some fixed value, the response
of a perfect integrator would be linear, as shown by the dashed line in
Fig. 420. The actual output of the RC-circuit is the exponential curve
shown:

t
e, = e,(1 — e EC), an

Compare this result with that of the differentiating circuit (Fig. 4-2);
in the present case the output corresponds to the ideal only at the start
of the transient, while the output of the differentiator was in error at
first and gave the desired result only after the transient had died out.
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Feedback Amplifier RC Integraior.—The charging current may be
made to be a true measure of e, by the use of a d-c amplifier as in Fig.
421, where e, is held constant or nearly so by the inverse feedback
through the condenser. As in the case of the similar differentiating
circuit, the amplifier must be arranged to invert and must draw no
appreciable input current. It is not necessary here that the output
voltage range encompass the grid level. On the other hand, the grid
level is the reference voltage for e,, as these points are conductively
coupled through R.

e
g R e e
b2 AANA .9
Pl
/
o— Time —

F1G. 4:20.—Response to a step function. Fi1c. 4-21.—Feedback amplifier RC integrator.

On the assumption of infinite amplifier gain, so that e, is not permitted
to move at all while e, is within its operating limits, the condenser current
is

. dea
1 = T (18)

But this is the current which flows in R; so if ¢, is measured with respect
to e,

dea
& = —RC - (19)
or
=~ pg / e, dt + (constant). (20

The constant of integration is simply the voltage of e, at the start of
the operation.

Taking the amplifier gain ¢ into account,

e, = —Qe, (21)
and
A dle, — e,)
1=0C e
_ G + 1 deo
= —C ~——— T (22)
But

t="F "R GR (23)
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S0
de,  —G e, 1 e /
4 T GFIRC GFIRC (24)
For a step function as in Fig. 4-20, this integrates to
=t
e, = —G[1 — g@+LERC]e,, (25)

__G [t_ & +...]3s_.
G+1 2(G + 1)RC RC

Thus e, approaches a value of magnitude —Ge, with a time constant of
(G + 1)RC (Fig. 4-22) rather than approaching e, with a time constant
of RC, as for the simple integrator. The initial rates of integration are
nearly the same [1/RC compared with G/(G 4+ 1)RC], but the duration

, of the integration before a given

b (G+1)RC s amount of error occurs is increased by

Gt 7 a factor of G + 1. Generally, the

— (ORE_~% gain is such that for ordinary values
“l 2 of e, the asymptote is far beyond the

o Time_— limits of the output range, so that
€ Bl e, would be leveled off abruptly by

Fia. 4-22.—Response of circuit of Fig. saturation long before approaching
4-21 to step function. —Ge, as in Fig. 4-22

These integrators are often referred to as ‘“feed-back time constant”
circuits and sometimes as ““ Miller feedback’ circuits because the con-
denser has the same qualitative effect as grid-plate capacitance. Tt must
be emphasized that though the time constant is greatly increased by the
amplifier, the output rate for a given input is hardly changed; in fact,
if the gain is in{nite, it is not changed at all. The grid voltage, though,
behaves as would the output of Fig. 4-19 if the condenser were (G + 1)
times as large. In some filtering applications this point is used as the
output rather than e,, the amplifier being for the sole purpose of multi-
plying the effectiveness of the condenser.

The fact that the output range need not include the grid voltage,
because the feedback is via the condenser, makes for simpler amplifier
design than in the case of the differentiator. This is fortunate, as the
problem of voltage integration seems to arise more frequently in com-
puters than that of voltage differentiation.

A very common type of integrator employs a single pentode or high-u
triode as in Fig. 4-23. The reference level for the input is the value
that ¢, has when e, is at its neutral value. If it is desired that this input
reference be ground, the cathode must be raised by the use of a bleeder
or by a self-biasing resistor. In the latter case the gain is somewhat
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reduced—the improvement of linearity afforded by resistive degeneration
being of no value in this respect.

The effect of condenser charging current on the relationship between
e, and e, was ignored in the foregoing equations. If circuit parameters
and integration rates are such that it becomes appreciable compared
with plate eurrent, the integration will be
adversely affected. In particular, if e, goes
so far negative that the condenser takes all
of the current in 12, the tube will cut off and
the output will be in error.

Accuracy of integration may be evaluated
in terms of the constancy of e, in proportion
to the input voltage as e, traverses its nor-
mal range. If ¢, changes by Ae, as e, moves
from one operating limit to the other, the
proportional change in integration rate for a  F1e- 423.—One-tube integrator.
given input is Ae,/ (e, — ¢,). Thus, the greater the input the less will be
the percentage error. On the other hand, if the scale of the input is
increased relative to the scale of the output rate, RC must be increased
accordingly. For long-time integration it is sometimes necessary to keep
the input scale rather low so that R and C will not be excessive. In
this case a very high gain amplifier is
needed, and amplifer drift will be more
noticeable.

The negative condenser feedback
gives the amplifier great stability and
freedom from oscillations, as compared
with the analogous differentiating cir-
cuit. This makes it feasible actually
to attain perfect integration through
the use of resistive regeneration to
obtain infinite gain in the amplifier.
The circuit of ¥ig. 4-24 is an example
i of this and also of the inclusion of a

Fia. 4-2¢.—Integrator with resistive cathode follower in the amplifier to
;eug;neratxon and cathode-follower out- obtain a low-impedance output and to

eliminate the effect on the amplifier of
the condenser current, though the latter is rarely a serious consideration.
The feedback to the cathode of the amplifier tube may be adjusted so that
for a limited range of e,, practically no movement takes place at the grid.

The regeneration can be increased beyond the point of ““infinite gain,”
and the device will still be operative as an integrator, with the error in
the opposite direction as compared with the finite-gain case. That is,

B+

+250
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G will reverse its sign, so that the curvature of ¢, in Fig. 422 reverses.
Figure 4-25 shows the voltage characteristics of the amplifier (with a
5-megohm resistance in series with the grid to show the limit imposed by
grid current), with three different settings of the regeneration. Without
the RC combination the reflex portion of curve € would not be realizable
and the output would follow one or the other of the dashed lines as e,
is raised or lowered. With R and C operating and e, at some fixed posi-
tive or negative voltage, e, and ¢, will slowly trace out all of curve C,
with the drop across R, and therefore the output rate, actually increasing
during the reflex portion. It is not permissible to obtain the negative
gain simply by reversing the sense of the amplifier, for the resulting device
would then behave like a trigger circuit. The condenser feedback must
be negative.

The above amplifier requires careful adjustment which depends on
the p of the tube and at best gives accurate integration over a very

C. Too much
regeneration
200 )
B. Correct {
" L A regeneration }
ERT 1/1
c &
N L
0Lla L L L I s L "
-5 -4 -3 -2 -1 0 +1 +2 43
¢ in volts

F1G. 4-25.—Characteristics of circuit of Fig. 4-24,

limited output range. Also, there is no convenient means for adjustment
of the input reference level, and this will change considerably with change
of heater voltage (e, being lowered about 0.1 volt by a 10 per cent rise of
E;). Reference is made to Vol. 18 for examples of stable amplifiers
having larger output ranges with high gain.

All the remarks in Sec. 42 about grid current, leakage to the grid
terminal, constancy of RC, and condenser soaking apply also to the
integrator. Condenser leakage, in so far as it may be represented by a
constant shunt resistance, has the same effect as reducing the amplifier
gain. It actually comprises a negative feedback of R/R’, where R’ is
the leakage, and thus may be neutralized by positive feedback in the
same ratio.

4-8. Integration Based on Inductance.—If a voltage is impressed on an
induectance, its time integral appears as the resulting current:

i=%/e& (26)

A voltage or power output could be obtained from this by means of one
of the special current amplifiers mentioned in Sec. 4-3.
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The RL integrator analogous to the RC device of Fig. 419 is shown
in Fig. 4-26, where R replaces C and L replaces R. The RC equations
also apply here if L/R is substituted for RC.

Similarly, a feedback amplifier type of integrator may be constructed
employing inductance, as in Fig. 4-27. A current flows in L proportional
to e, — e;, so, unlike the REC-integrator, it is advisable to design the

Fia. 4:26.—Simple RL-integrator. ¥i16. 4-27.—Feedback amplifier RL-inte-
grator.
amplifier with its output range in the neighborhood of the input potential,
since this current tends to saturate the inductance.

A cathode-follower arrangement may be employed analogous to the
circuit of Figs. 47, 4-8, 4:10, or 4-11, an example being shown in Fig. 4-28.

Except for very short time integration, it is not practical to use air-
core inductors. All the remarks in Sec. 4-4
concerning the coil resistance, saturation, and
hysteresis apply analogously in integration.

4.9, Integrators Employing Tachometers.
Integration of a Voltage with Respect to Time.
Any of the tachometers described in Sec. 4-5
for obtaining the time derivative of a mechani-
cal rotation in the form of a voltage may be
used as the basis for an integrator that gives
the time integral of a voltage in the form of a
rotation. In this case the tachometer is
driven by a motor, and their rotation com-
prises the output. The input voltage is com- Fic. 4-28.—Cathode-follower
pared with the tachometer output voltage, the RL integrator.
difference being fed to a power amplifier whose output drives or controls
the motor. The basic circuit is exemplified in Fig. 4-29, although there
are other input arrangements than the series circuit shown.

The amplifier operates to drive the motor and tachometer at such a
speed that the amplifier input ¢, is held within very close limits of the
reference level. The sense of the amplifier is such that if ¢, is excessive
one way or another, the motor will accelerate or decelerate so as to bring
it. back toward zero. Thus the tachometer speed is made to be such that
its voltage output is very nearly equal to e,, so the total shaft rotation
is & measure of the time integral of e,.

This integrator is actually a servomechanism and is usually referred
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to as a rate servo or velocity servo. The servo aspects of the device are
discussed in Secs. 14-4 and 14-5. Several examples are given in detall,
with methods of employing some of the various types of tachometers
that were described in Sec. 4°5.

The higher the gain of the amplifier the less will be e, and the more
nearly equal tachometer voltage e, will be to e,. If the motor speed

) Sle-e,) dt

Amplifier

Fi6. 4-29.—Velocity servo integrator.

were proportional to e,, however, ¢, would still be proportional to e, and
the integration would still be satisfactory. But mainly because of static
friction, this is by no means the case, especially where the motor is
required to run in either direction. This is illustrated in Fig. 4-30
which shows a large ‘‘dead space’ at zero speed, with considerable error
signal required to start the motor and generator in either direction. The
dashed line is the best linear ap-
proximation to the actual curve,
and the proportional error of inte-
gration will be the difference be-
tween this and e, divided by e,.
Thus, the larger the voltage range
covered by ¢, and ¢, the less will be
the resulting percentage of error.
Also, of course, the amplifier gain
should be as high as possible.
In contrast to the RC and RL
. . ) integrators, therate servointegrator
Fra. 4-30.*Tyt;())xL;:Ir(;'rols(i);:ltéll‘servo respanse operation isnot affected by the mag-
nitude of the integral, i.e., the total
rotation of the shaft. It may be affected, however, by fast changes of the
input voltage. If this changes abruptly or at a greater rate than it is
possible for the motor-generator combination (and associated mechanical
parts) to follow because of inertia, part of the integral of the input will
be left out of the total output. For example, in Fig. 4-31, assume that
¢e has been constant, corresponding to a certain rate of integration.

Speed —

|
?
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Assume, also, that the amplifier gain is infinite, so e, equals ¢,. This
assumption does not imply that it will never saturate but only that within
limits of saturation, no movement is required of ¢,, Now e, is rapidly
increased to some new value, at a rate faster than the available accelera-
tion of the mechanical system with full accelerating power. The speed
finally comes up to the correct value, as shown by equality between e,
and e,, but an error in the total rotation has acerued, equal to the integral
of e, — e; l.e., the integral of the error
voltage e,.

There is a way of neutralizing this K rh
acceleration error by combining with the
amplifier an RC integrator (Sec. 4-7),
which evaluates the error [e, dt and /\
makes the motor run at speeds beyond
the required new speed (Fig. 4-31) until Time ——
this integral is brought back to zero. Fre. 4-31.—Illustrating loss of

> . K integration caused by rapid ac-
AsshowninFig. 4-32twoamplifiersarere- celeration.

quired; a high-gain voltage amplifier and

a power amplifier to drive the motor. The latter should have sufficient
gain so that very little movement of e,, relative to its available swing,
is required to give full power output in either direction. The first
amplifier with its condenser feedback operates to hold e, constant at
the zero level in spite of any deviation of ¢; from e,. If there is an error
as in Tig. 4-30, a current will flow in R proportional to the error, which
will flow in C by virtue of movement of e, (see Sec. 4-7), and the resulting

@ A Az

€5~ €¢

Fia. 4-32.—Use of RC integration to cancel acceleration errors.

charge in C will measure the integral of e, — e;. Before e, can get back
to its normal value, this charge must be delivered back in the form of
reversed current in R, so e, — e, will reverse its sign until the error is
just canceled. The auxiliary resistiance E is to prevent oscillation, as
is explained in Sec. 14-5; its presence does not affect the above cancella-
tion. The first amplifier may be given infinite gain by internal resistive
regeneration (Sec. 4-7): in this case the net error signal will be zero.
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Of course, the accuracy of the integrator is no better than that of the
tachometer employed. These were discussed briefly in Sec. 4-5, and
more details are given in the Components Handbook, Vol. 17.

A d-c input voltage may be integrated by the use of either a generator
or a commutated condenser type of tachometer. In the latter case the
feedback required to keep the tachometer from having an exponential
characteristic, as mentioned in Sec. 4-5, obtains directly as part of the
servo loop. The details are given in Sec. 14-5. An advantage of the
condenser over the tachometer generator, in some applications, is that
if the input voltage and the condenser-charging voltage are derived from
the same source, the integration will pe independent of variations in the
source.

An a-c input voltage, if it is not required to pass through zero, may
be simply peak detected and applied as a d-c voltage. If it does go

?x . Ty=ﬁdx

Amplifier

I'16. 4-33.—Integration of one motion with respect to another.

through zero, a reference a-c voltage is needed to discriminate between
positive and negative inputs. A phase-sensitive relaving circuit may be
employed to switch the direction of the servo output when the input
passes through zero, or a linear phase-sensitive detector may be employed
to convert it to direct current.

An a-c voltage may also be integrated by means of an induction
generator type of tachometer, with the advantage that the error signal
is alternating current and may be amplified as such. If the reference
alternating current applied to the excitation winding of the generator
is from the same source from which the input is derived, the integration
will be independent of source variations, as in the case of the condenser
tachometer. The primary disadvantages of the induction generator
are the great temperature sensitivity, the speed-sensitive phase shift
between excitation and output, and the low “signal-to-noise ratio” at
low speeds.

Use of Velocity Servos to Integrate with Respect to a Dimension Other
Than Time—In combination with an additional tachometer and a
potentiometer as in Fig. 4-33, a velocity servo can produce a rotation
that is the integral of one displacement or rotation with respect to
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another. The dimension of time, although it plays an important role
in each part of the device, need not appear in the over-all equation. If
is the total rotation put into the first tachometer T'; and r is the poten-
tiometer setting, the voltage delivered to the rate servo is proportional
tor dr/dt. But the rate servo output is proportional to the time integral
of this, or simply [r dz.

Unless the accelerations of z can be kept under the value that would
require greater acceleration of T, than is available, it is necessary to
employ the RC integrator combination or its equivalent in the amplifier.
The integration in this case will not be immediate but will eventually
reach its correct value.

This integrator performs the same function as the ball-and-disk
integrator of Sec. 4-11, in that both of the inputs and the output are
mechanical. The outstanding advantage, for certain applications, is that
all three motions as well as the amplifier may be mechanically remote.
Also, it may be assembled from standard components.

By the use of nonlinear potentiometers, the integration with respect
to z of various types of functions may be achieved. Also, several input
tachometers and potentiometers may be added in various ways for the
input, to obtain combinations of integrals.

4-10. Watt-hour Meters as Integrators.—An ordinary induction-type
watt-hour meter used as such gives the time integral of a-c power as a
shaft rotation. It may be used to integrate an a-c voltage, impressed
on one of the two windings if a reference voltage is impressed on the
other.

This latter must be of constant magnitude and phase. In the case
of the velocity servo integrator employing either a condenser or induction
generator tachometer, if the reference voltage and input vary in propor-
tion, the integration rate remains constant. This is not true of the watt-
hour meter; in fact, if the reference and input are derived from the same
source, the integration rate will vary as the square of the source voltage.

The principle of operation is that the torque produced on a metal disk
by the action of the fields of the two currents, as in an induction motor,
is opposed by the eddy-current drag of a permanent magnet field. The
first torque is proportional to the product of the two currents, while the
second is proportional to the rotational speed; thus they are equal when
the speed is proportional to the product of the currents. Both torques
are proportional to the conductivity of the disk, which, therefore, cancels
in the equation. The permanent magnet will strengthen with decreased
temperature, giving slower integration as with the d-c tachometer, but
special magnetic shunts may be used to offset this.

The fact that the integration rate is proportional to the cosine of
the phase angle between input and reference voltages may be put to
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advantage in certain types of computers. For example, if it is desired
to combine integration with the resolution of a vector into rectangular
components, this is accomplished directly if the vector angle corresponds
with the above phase angle.

4-11. Mechanical Integrators. Gyroscope—If a torque is applied
to a free gyro about an axis perpendicular to its axis of spin, it will not
vield to this torque but will, instead, rotate about the axis perpendicular
to both the axis of spin and the axis of the torque. The rate of this
rotation; or ‘precession,” is proportional to the torque; therefore the
total rotation is a measure of its time integral. The spin velocity must
be constant, as the integration rate is inversely proportional to it.

The input torque may be derived

from a displacement or rotation by

‘ y=/rda; means of a spring, but it must be ap-
plied in such a way that its axis can
rotate so as to remain at right angles
P 0 U to the spin axis whose rotation com-

prises the output. If this is not done,

_I— the integration rate will decrease with
- ! the cosine of the output rotation. The
z input may be applied electrically by

Disk ] Cylinder  means of an induction torque motor.

In this case the resistivity of the
torque motor rotor will affect the rate.
Since no actual rotation is required of
the torque device on its own axis, it
may be an electrodynamometer or permanent-magnet and coil device
as in an ammeter.

An interesting application is found in the German V-2 projectile,
where the acceleration is integrated by means of a gyroscope to determine
the velocity. The precessing torque is obtained from the acceleration
of the inertia of the mass of the gyroscope and is thus proportional to
acceleration.!

Bali-and-disk Integrator.—This purely mechanical device is sometimes
used as a link in electronic computers where it is necessary to integrate
a variable with respect to some quantity other than time. In Fig.
4-34, the ball, which is constrained from tangential motion, is positioned
radially on the surface of the disk by the motion r which is to be integrated.
A rotation z of the disk rolls the ball, causing the eylinder to rotate in the

b

Fi1G. 4-34.—Ball-and-disk integrator.

1 Thomas M. Moore, “V-2 Range Control Technique,” Elec. Eng., €6, 303, July
1946.

? See, for example, M. Fry, “Designing Computing Mechanisms,” reprinted from
Machine Design, Penton, Cleveland, August 1945 to February 1946.
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opposite direction. A given rotation of the disk causes a rotation of the
cylinder proportional to this rotation times r, so that the total movement
of the output y is a measure of the integral of r with respect to z.

The device operates correctly as r goes through zero and becomes
negative. The output load should be small, or slipping will oceur,
with resulting error. But if it is carefully made and the load is negligible,
the device can be very small (2 in. in diameter) and still give integration
of less than 1 per cent error. Large integrators, such as those used in
the MIT differential analyzer,! are accurate to 1 part in 10,000 and, with
special care, 1 part in 100,000.

Electrolytic Integrators—The amount of material removed from or
deposited upon an electrode in an electrolyte is a very accurate measure
of the time integral of the current through the electrode. Such a device
is not practical as a continuous integrator because of the difficulty of
obtaining a usable output proportional to the accumulation. The device
is useful, however, where the desired output is not the integral, but a
signal occurring when the integral has attained equality with some
specified amount. In this case, the integration may start with a certain
amount of plated material on one electrode; when all of this has left the
electrode, a rise in voltage across the cell results, which can be utilized
for the output signal.?

1V. Bush and S. Caldwell, “A New Type of Differential Analyzer,” Jour. Franklin
Inst., 240, 255-326, October 1945.
2 Moore, loc. cit.



CHAPTER 5
THE GENERATION OF FUNCTIONS

By D. MacRag, Jr. anxo W. RorH

6-1. Introduction.—In computer design it is often necessary to
produce a prescribed function of an input variable. Such a function
may have an explicit expression in closed form (for example, sin z,
a8 A/2* — x); it may be defined by an implicit relation; or it may be
given simply as a set of points or a curve in two dimensions. If the
function can be expressed in closed form, it is usually possible to devise
a method of computing it bv using the operations of arithmetic and
calculus to express an equation that defines the function. Thusy = sin x
might, conceivably be produced! by instrumenting the equation

d*y _
d.'l"l + :[/ - 0)

and y = x3 by the equation
Yy = xax.

1t is also possible to produce some functions by the use of relations
among physical variables that involve the functions directly. Examples
of this are the projection of a rotating point on a straight line (resolvers,
Scotch yoke) to produce sines and cosines, and the use of the low-current
characteristic of a diode to produce exponentials or logarithms.

The use of simple defining operations or of relations among physical
variables is in some cases difficult; and when the function to be computed
is known only as a set of empirical values, these methods eannot be used.
In such eases it is often convenient to use methods that are not peculiar
to the function in question, such as the construction of nonlinear elements
(potentiometers, gears, cams) or the combination of simple elements
(for example, linear potentiometers) to approximate the desired funetions.
These will be called ““curve-fitting’’ methods.

Some devices that produce nonlinear functions have only a single
input and a single output; nonlinear gears and cams and certain vacuum-
tube squaring devices are of this type. There are others that effectively
have two inputs and may he used to multiply one of them by a nonlinear

! This method is used in the MIT differeutial analyzer; sce Bush and Caldwell,
“A New Type of Differential Analvzer,” Jour. Franklin Inst., 240, 274, October 1945.

a0
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function of the other. Examples of these are resolvers and nonlinear
potentiometers. These devices may be used as nonlinear modulating
devices (Vol 19, Chap. 12, of the Radiation Laboratory Series) or,
with the second input held constant, simply as generators of nonlinear
functions.

Integration, differentiation, and combinations of these operations are
also included as means of generating functions; for if a set of values of
an input function is given, associated with values of an independent
variable, these operations produce a corresponding set of output values.

CURVE FITTING

6-2. Construction of Nonlinear Elements.—The most straightforward
way of producing a nonlinear function without solving an equation for
it or using physical laws involving it is the construction of a nonlinear
element. Elements of this type are potentiometers with nonuniform
cards or unequally spaced wires, and gears and cams of varying radii; a
function of two variables can be represented by a shaped surface. These
elements can be used to approximate functions of any sort—analytic
or nonanalytic—subject to limitations of construction, which may place
bounds on the value of the function or its derivatives.

In the construction of nonlinear elements, the error is usually of a
random nature and cannot be expressed conveniently as a function of the
independent variable except by plotting an error curve for each par-
ticular element.! Production tolerances on these elements are usually
expressed in terms of greatest permissible error (for example +0.1 or
1.0 per cent of maximum output or the corresponding number of thou-
sandths of an inch). In some cases an estimate of probable error may be
made.

Potentiometers.—In Vol. 17, Chap. 82 a number of general methods of
winding potentiometers to produce desired resistance functions are given.
Those which may be used for curve fitting are as follows:

1. Shaped mandrel. The length of a turn of wire is varied by winding
on a mandrel or card of variable width, the width of the card vary-
ing linearly with the derivative of the desired function. If the
card is smooth, there is a physical limitation on the maximum
slope that it may have before turns roll off (about 15°). This
places an upper limit on the second derivative of a function for
which a potentiometer can be wound in this way. An approxima-
tion with straight-line segments is sometimes useful.?

1 These correspond to the Class A errors defined in Sec. 2-6.

2 See also Vol. 19, Sec. 12-23, of the Series for discussion of potentiometers.

31n Vol. 19, Sec. 12:26, an example of such a potentiometer is given. The applica-
tion is a direct drive for a B-type radar display as a function of antenna position.
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2. Controlled wire spacing. With wire of uniform resistivity, the
spacing between wires can be varied to obtain a desired resistance
function. One method of accomplishing this in quantity produc-
tion is to use a servo winding device that equates the output
resistance function to a standard during the winding process. The
chief limitation of this method results from the minimum possible
wire spacing; this puts an upper bound on the first derivative of a
function that can be produced in this way. Figure 51 shows a
function that has been wound! by this method. This is a hyper-
bolic function used in triangle solution (Sec. 6-4). On a card 6
in. in length, an accuracy of +0.25 per cent of resistance measured
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F16. 5:1.—Function wound on a nonlinear potentiometer,

from the high-resistance end was attained. The total resistance
was 20,000 ohms.

3. Control of wire size. An etching process may be used in connec-
tion with a servomechanism for winding nonlinear functions.
Minimum wire size might be expected to be the chief limitation,
again corresponding to an upper bound on the first derivative.

4. Step potentiometers. If discrete steps suffice in the production
of the function, a device that is effectively a multicontact switch
may be used, with resistors of appropriate values connected between
the contacts.

! This work was done by the Thomas B. Gibbs Co., Delavan, Wis. Some of these

potentiometers were also made by the Fairchild Camera and Instrument Corp.,
Jamaica, N.Y.
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5. Tapped winding with shunts. If taps can be brought out from
points on the winding, a resistance network can be connected to
these points; in particular, shunting sections of the potentiometer
with fixed resistors will produce a series of linear sections that may
be used to approximate the desired function.

The accuracy with which a nonlinear potentiometer can be
wound depends on the nature of the function, the card length that
can be used, and the method chosen for winding. For a function
whose derivatives are not too great, it is possible to wind a potenti-
ometer of 3-in. diameter with errors not exceeding 1 per cent of the
maximum value of the function; with care, the errors of a 6-in.
potentiometer can be held to 0.1 per cent. Some of the functions
for which nonlinear potentiometers have been wound are the sine,
cosine, secant, tangent, cotangent, and hyperbola.

6. Nonlinear mechanical elements. A mechanical motion varying
nonlinearly with respect to an input shaft rotation can be obtained
by the use of a cam.! A simple type of cam is a metal plate of
variable radius that when rotated about an axis produces a vari-
able radial displacement as output. A refinement of this type is
the grooved cam, a plate with a spiral groove, which operates
similarly but permits more than one full rotation of the input shaft.
A function of two variables can be produced by the ‘““barrel cam,”
which has a surface equivalent to a series of simple cams along the
same shaft; distance along the shaft is then the second input
variable.

Another method of producing a shaft rotation that varies non-
linearly with an input shaft rotation is to use gears of variable
radius.? There is a maximum value that the second derivative
of a function may have if the function is to be represented in this
way. For both cams and gears, a minimum value of the first
derivative is determined by the radius of the shaft.

5-3. Nonlinear Functions with Simple Elements.—The difficulties of
manufacture of special nonlinear elements make it desirable to use simpler
and more readily available parts if possible. A large number of useful
functions can be approximated by the use of a linear potentiometer
with various resistance networks to produce a voltage that varies as a
nonlinear function of potentiometer shaft rotation.

A greater variety of functions may be obtained if two or more poten-
tiometer shafts are connected (‘‘ganged’) either directly or by gearing.
In the design of networks of this sort, a combination of trial and error

1 See ““Basic Fire Control Mechanisms,” Ordnance Pamphlet No. 1140, pp. 46f.
1 8ee Vol. 17 of the Radiation Laboratory Series.
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with network analysis is necessary. The process of trial, or the selection
of the general type of potentiometer network to be used, however, is
facilitated by a knowledge of the sorts of functions that can be produced
by simple potentiometer networks. For this purpose it is helpful to have
families of output curves for various basic circuits. Once a circuit type
has been chosen, the “best’” values of the components may be found by
an analytical method or by experimental measurements of the output
function for different component values. In the latter case, a few experi-
ments often show very rapidly the changes that can be produced in the
function with variation of particular components. The question of
whether analytical or experimental methods are to be used depends on the
complexity of the network. If there is only one potentiometer in the
network, an analytical method may be used to fit the desired function
at three or four points; but if two or more potentiometers are used, an
experimental method is sometimes preferable.

If the effect of a second potentiometer (or whatever element is used)
is relatively independent of that of the first—the result being a sum, for
example—the design process can be that of successive approximations.
This method may be applied to either analytical or experimental design.
An error curve is plotted for the approximation obtained with the first
potentiometer, and another network is sought that will produce a curve
nullifying this error. This resembles a convergent series expansion of
the function. It can be applied to the Taylor expansion by using devices
producing powers of the independent variable or to the Fourier expansion
by ganging sine-cosine elements.

Loaded and ganged potentiometers may also be used to produce non-
linear resistance functions. Other examples of the combination of rela-
tively simple devices to approximate desired functions are the design
of shaped waveforms using exponentials,! and the use of linkages.?

A family of nonlinear functions may be generated by the use of a
nonlinear element in a network with linear elements. A crystal rectifier,
a lamp, or a thyrite element, for example, may be used with linear
resistances. Another sort of characteristic that may be produced in this
way is a resistance that is a nonlinear function of temperature; this has
been done by combination of thermistors and resistors.?

When curve fitting is done by the combination of simple elements, a
substantial portion of the error is usually predictable and independent

1 Vol. 19, Chap. 8, of the Radiation Laboratory Series.

? Methods of approximating functions are treated extensively in Vol. 27 of the
Series in connection with the design of linkages.

3 R. Krock and N. Painter, “The Two-Disc D-¢ Thermistor Bridge Circuit,” RL
Report No. 502, Jan. 12, 1945. This report gives a fairly general theoretical treatment
of curve fitting at three points by means of a nonlinear element.
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of errors of the components used. This quantity is the difference between
the desired function and the function that would actually be computed
with perfect components.! It can be expressed in equations or graphs,
and criteria can be stated for minimizing this error by proper choice of
component values. A mathematical criterion such as the method of
least squares may be used, but it is often too troublesome to use so refined
a method. In general, a ‘“weighting function”” must be used if a given
error in the nonlinear function produces different errors in the computer
output, the errors depending on the region of the nonlinear function
being used. If the weighting function is carried to an extreme, a set of
points of the desired function can be chosen and the error minimized at
those points only. If the number of points chosen is equal to the number
of independently variable parameters of the approximating system, and
if the desired function can be approximated with realizable components,
these parameters may be so chosen that the error is zero at these points.
This method, though it does not necessarily give the “best’ fit, makes
it possible to solve for component values in terms of the values of the
function at the selected points.

b-4. Curve Fitting with Linear Potentiometers. Analysis of Loaded
Potentiometer.—A method that is sometimes useful for approximating
nonlinear functions involves the use of linear
potentiometers in resistance networks. The
most general resistive network containing a
single potentiometer is a network including a-c
or d-c generators and resistances, with the
condition that two resistances having a com-
mon node constitute the potentiometer.
These resistances will vary as z and (1 — z)
respectively, where z represents the angular
displacement of the arm from one end of the Fia. 52.—General loaded-
potentiometer, expressed as a fraction of its Potentiometer circuit with

zero-impedance supply.
full range. The common node corresponds to
the contact made by the movable arm. It can be shown by means of the
nodal analysis that any voltage appearing in the network can be expressed
as a function of z in the form?

0= A (x———: + oz b‘>, 1)
22+ axx + b2
where 4, a,, and b, are functions of the resistances and generator voltages
and a, and b, are functions of the resistances only.
1 This corresponds to the Class B errors mentioned in Sec. 2-6.
2 A similar function is used for curve fitting with two rheostats; see N. Painter,

““Matching Resistance Curves by Means of Two Linear Ganged Potentiometers and
a Three Terminal Resistance Network,” RL Report No. 610, Aug. 7, 1944.
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A special case of some interest is that in which the potentiometer is
supplied with voltage from a zero-impedance source and the output is
taken at the potentiometer arm. This will be called a “loaded-potenti-
ometer’’ circuit. In this case the network connected between the poten-
tiometer arm and the reference node can be replaced, by means of
Thévenin’s theorem, by its internal resistance and open-circuit voltage.
The cireuit cf Fig. 5-2 is the most general attainable subject to these
restrictions. The circuit has three
independently variable parameters
that determine the shape of the out-
put function: ¢;, e;, and a = I2,/2;.
R, € The level of the output may be
changed by varying the potential of
the reference node; this means that

- there are four independent variables

Fie. 53;&?&:?&3’?&{15 loaded-instead of the five of the general case
of Eq. (1). The funection may also

be moved along the z-axis by redefining the independent variable as a
linear function of z. A rearrangement of the circuit for convenience of
analysis is shown in Fig. 5-3. The two voltage sources e¢; and e, with the
corresponding series resistances (1 — z)1; and al?y can be replaced by
current sources e;/(1 — x)R; and es/al; respectively, with parallel
resistances as shown in Tig. 5-4.' Since the current sources and resist-

(1-2)Ry afty

e, £

e; (1-z)R, < zR, €2 afR, €
(1-z)R, aIR‘
e; 2
+ —_
€= (1I-T)R aRy

1 1 1

+ =+
(l-z)R 2R, &R,
F1G. 5-4.—Transformation of loaded-potentiometer circuit with current generators.

ances are all in parallel, the output e, is simply the product of the total
current and the effective parallel resistance, or

€; +§3
1=z a __x[ae.--{-(l—:c)eg]' @
e"“ll +_1+1” a+z(d = 2a) )
R

! For this transformation see, for example, H. W. Bode, Network Analysis and
Feedback Amplifier Design, Van Nostrand, New York, 1945, p. 12.
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This can be generalized somewhat by the addition of fixed resistances at
the ends of the potentiometer, in which case z varies over a smaller inter-
val than 0 £ z £ 1. This takes into consideration part of the effect
of internal resistance of the voltage source; it does not mean, however,
that the circuit of Fig. 5-3 is still the most general one when ¢; has internal
resistance; the Thévenin’s theorem transformation by which that circuit
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Fia. 6:5.—Output curves for loaded potentiometer with load connected to bottom end
(ez = 0).

¥\

was obtained is not valid for this case, since the upper end of the poten-
tiometer is no longer at a fixed voltage relative to the reference node.
Some applications of Eq. (2) will now be considered.

Miscellaneous Functions from a Single Loaded Potentiometer—In the
process of fitting empirical functions with loaded potentiometers, it is
helpful to know the sorts of function that can be produced with simple
loading configurations. One such case is the circuit of Fig. 5-5, in which
e = 0. For this network Eq. (2) assumes the form
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e Ta
20 7 3
e; o+ x(l —2x) (3)

Tigure 55 shows a family of curves for e;/e, as the resistance ratio a
assumes different values. A corresponding family of curves may he
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¥1Gg. 5:6.—Output curves for loaded potentiometer with load conneccted to upper end
(es = e:).

0

drawn for a load resistor connected to the upper end of the potenti-
ometer. This corresponds to e; = ¢; the equation becomes

€ Zla+1—~2x)

e o+ z(1 —AT) (4)
Curves of this function are shown in Fig. 5-6.

Figure 5-7 illustrates the effect of varving e, in the circuit of Fig. 5-2.
If e2/e; = 8, Eq. (2) becomes

€ _ 2la + B — 2)]
e a+z(l —x) 2
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Figure 5-7 shows a family of these curves for @ = 0.1 and various values
of 8. '

Equation (5) may also be used to express the error term in the casc
when a potentiometer is being used to produce an essentially linear func-
tion but when a small amount of loading (R, R; or a>> 1) is present.
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Fig. 5:7.—0Output curves for loaded potentiometer with 8 = ez2/e: as parameter.

In this case Eq. (5) can be expressed in a more convenient form by divid-
ing numerator and denominator by a.

I it

& 1+(—$)
a

This can be rewritten by means of the approximation

1+ e
1+62

=~ 14+ € — €,
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if €1, €2 K 1:

_e_,zx[l_f_(l—;z)ﬁ_x(l—z)]_ ©6)

T x
The departure from linearity, expressed as a fraction of maximum output,
is then
eo—zei _ z(1 —2)(8 — 2).
€; - a

This effect may be considered to be due to the varying output impedance
of the potentiometer as a function of z. Inthecases = 0, the magnitude
of the error is z2(1 — z)/«, which has a maximum of 0.15/a at z = §.
A plot of this function is shown in Fig. 5-8. One way of reducing the
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Fia. 5-8.—Potentiometer loading curve for « >> 1.

effective error is to operate over only a fraction of the full output voltage,
as shown by the dotted line in Fig. 5-8; this may be done by inserting in
series with the ‘‘high’”’ end of the potentiometer a fixed resistance of
about half the value of the potentiometer resistance and calibrating the
system so that the output is correct at the high end of the potentiometer.
The maximum output will then be only two-thirds the supply, but the
maximum departure from linearity, expressed as a fraction of maximum
output, will be reduced by a factor of about 6.

Another method of reducing the error somewhat is to make 8 = 4 by
connecting an additional load from the arm of the potentiometer to the
high end. This effectively halves a. The maximum error in this case
is 0.05/a’ (where &’ = the new value of a) or 0.10/ay (ap = original value
of a before addition of extra load). This method is inefficient in reduc-
ing the nonlinearity, relative to the first method.

For the approximation of symmetrical functions it is of interest to
consider the form that IEq. (2) takes when the circuit is connected sym-
metrically with respect to the center of the potentiometer (as in Fig. 5-9).
It will be convenient to let the independent variable be zero at the center
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of the potentiometer and the loading be symmetrical (ex = e1/2) and
to measure the output with respect to the level e;. This can be done by
defining a new input variable y such that

y=2zx~—1
and a new output variable u such that

U = €, — €9.
Substitution of these three conditions in Eq. (2) gives an expresson for
u as a function of y,

_ 4ay62 A

R Popray g @

To put this into a more convenient form, let

dba+1=1:
Then
- . ¥ .
u = ex(l — 9) = 5 (8)
The curves for this function resemble those of Fig. 5-5 but are symmetrical
with respect to the origin.

Tangent Approximation.—By expanding the denominator of Eq. (8)
in a power series,

= ex(1 — &)(y + oy* + 8% + & + - - ). (9)
The series for tan 8 is
liE 26° 1767
By letting 6 = § in Eq. (9) (that is, o = %), the function produced by the
loaded potentiometer becomes

u 282(++++ )

The quantity in parentheses differs from tan y by about y%/45; at y =
radian (29°) the error due to this term is only 0.04°. The circuit! is
shown in Fig. 5:9. If a = 0.448, the angular error can be held to +0.1°
up to y = 1 radian.

To achieve in practice anything like the theoretical accuracy, it is
necessary to calibrate the system carefully. This involves setting
e2 = e1/2, zeroing the input shaft at the center of the potentiometer,

1 Details of construction of such a circuit are given in G. D. Schott, “Loaded Poten-
tiometer Triangle Solver,”” RL Group 63 Report, May 31, 1944. See also R. Hof-

stadter, “A Simple Potentiometer Circuit for Production of the Tangent Functlon
Rev. Sei. Tnst., 17, 298-300, August 1946.

E. G. & G. LIBRARY
LAS VEGAS BRANCH
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and setting B: = Ry/2. The condition ¢; = £,/2 may be satisfied by
supplying the potentiometer with alternating current by means of a
center-tapped transformer. A phasing adjustment must be provided
between the input dial and the potentiometer shaft in order that the zero
position of the input shaft may correspond to the center of the potenti-
ometer. The adjustment of R; may be made by means of a series poten-

tiometer to produce the correct

+e; iy output at a known input.

'S',‘,‘;L:tt Secant Approzimation.—A
1~y B ! ; ;

J good approximation to the secant
(1+2) &y J‘f function can be obtained by the
30448 ¢, use of a potentiometer and auxil-
LB g lary resistor (Fig. 5:10). In this
=€, L case the output is not from the

Fiu. 5:9.—Circuit for approximating tangent  potentiometer tap, so the loaded-
funetion. . .
potentiometer analysis does not
apply. By straightforward network analysis it is found that the ratio of
output to input is
€o R, 4o

(L. = — (10)
R

where y 1s the fractional angular displacement from the center of the
potentiometer as defined in connection with symmetric functions and

[ 1
1 ) Yy
| Input

£

1
t
i
!

]

Fia. 5-10.—Circuit for approximating secant,

]
]

-

3R

o = R./R;. This function is 1/y times the function of Eq. (7), for the
same value of a. Again the substitution

da + 1 = %
facilitates the expansion of the denominator in a power series:

2= (=AYt ),
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The corresponding expression for the secant is
Secy=1+%y2+ﬁy4+ PN

Let 5 = §(z.e., « = 1); the error then is approximately %y’

The same network, with the potentiometer as the bottom element
and the resistor at the input, gives a fair approximation to a quadratic
voltage function. The resistance of the potentiometer with ends con-
nected is a quadratic function (Secs. 3:5, 5-9).

Square-root Approximation.—An approximation to the square root
can be obtained with the circuit of Fig. 511. The output curve is
compared with a square-root curve in this figure; the error is 1.7 per
cent or less of maximum output over the range 0.04 £ 2 £ 1.

10
= Square-root curve
~= Output of network
08} o Points at which
curves were
equated
5=0911
06}
¥z | T +6Vz
€ 179
04t
0.2
/ e
/
lo " " A " . n L 2 " "
4] 02 04 z 0.6 08 10
Fig. 5-11.---Approximation to square root.

The procedure in selecting the circuit constants is first to write the
equation for the network type chosen,

e Al +a)
e z+a+b

which contains the three unknown constants 4, a, and 6. This permits
an exact fit to the curve y = +/z at three points (z;,5:). The points
chosen were (0.04, 0.2), (0.36, 0.6), and (1.0, 1.0). Three equations in the
three unknowns may be written, and a solution is possible by use of the
relation

1 1 b
5.-~Z+A(x.-+a)’

the variable 1/4 being eliminated by subtraction and /4 by division.
The resulting equation, from which the dotted line in Fig. 511 was
plotted, is
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y =170 (2 5007),
r + 0.911

In the case of more complicated networks, for which the simultaneous
equations are difficult to solve, fitting may be done more conveniently
by plotting families of curves for the available and desired functions and
superimposing them.

5-6. Other Combinations of Simple Elements. Shaped Waveforms.—
The application of a simple waveform such as a positive step function
to a network produces a response that may be shaped within certain
limits by the choice of the elements in the network. If an KC-network
is used, the resulting waveform will be a combination of exponentials.
This method has been used to produce an approximation to a hyperbola.?

A waveform may also be approximated by a series of straight-line
segments. This may be done by passing a linearly increasing current
through a network of resistances and diodes;? transition from one segment
to the next occurs when the waveform rises to a level at which a diode
either begins to conduct or stops conducting, in either case changing the
effective resistance of the circuit and the slope of the output waveform.

Linkages—The use of mechanical linkages to approximate functions
is a method having wide applicability (see Vol. 27). Bar linkages have
been found to have certain advantages. Extremely long life may be
expected from devices of this sort. Close mechanical tolerances must
be held, however, the closeness depending on the accuracy desired. Link-
ages for functions of two variables have been designed by means of a
method of successive approximations.

TRIGONOMETRIC FUNCTIONS

The trigonometric functions most often produced directly are the
sine and cosine; other functions, such as the secant, tangent, and inverse
trigonometric functions, may be produced by combining sine-cosine
devices and by the use of feedback. The most common method of
producing sines and cosines is the construction of a model in which the
projection of a rotational motion on a line provides a quantity propor-
tional to the cosine of the angle of rotation measured from the line. This
principle is used in electrical resolvers, rectangular-card sine potenti-
ometers, and Scotch yokes.

Trigonometric functions, like any other functions that vary sufh-
ciently smoothly, may also be produced by curve-fitting methods; for
example, nonlinear potentiometers have been used to produce sines and
cosines, and cams to produce the secant. The choice in each case depends

1Vol. 19, Chap. 8, of the Radiation Laboratory Series.
1 1bid




Sec. 5-6] VARIATION OF ELECTRICAL COUPLING 105

on whether the curve-fitting method or the use of physical laws involving
sines and cosines is easier to instrument and more accurate. There are
some devices that make use of both the physical law and a curve-fitting
procedure. In some electrical resolvers having iron cores, for example,
the model provides a first approximation to the sine function, but higher
accuracy is obtained by careful spacing of stator windings or by the
addition of a compensating cam, each of the latter operations being a
case of curve fitting within a limited region.

b-6. Variation of Electrical Coupling by Rotation. Types of Devices.
Both electromagnetic and electrostatic coupling coefficients can he varied
mechanically. A typical electromagnetic device for producing sines and
cosines consists of a cylindrical stator with one or more windings, inside
which is a rotor with one or more windings.! FEither air cores or iron
cores may be used. The number of windings on the rotor and stator is
referred to by calling the device a ‘‘1-t0-3 phase’ or ‘“2-to-2 phase’’

Fra. 5-12—Bendix Autosyn, exploded view.

device, even though in ordinary use the a-c¢ voltages on all these windings
are essentially in the same time phase. Devices having 3-phase stators
or rotors are usually called synehros; those with 2-phase stators or rotors
are often called resolvers because they may be used to resolve a two-
dimensional vector into its rectangular components.  An air-core type of
2-t0-2 phase device used for angle measurement is known as a goniometer.

Figure 5-12 shows an exploded view of a typical 2-to-2 phase, light-
weight resolver. The drawing of lig. 512 shows the eylindrical rotor,
with slip rings for electrical information, and the stator into which the
rotor fits.. If the input is to the stators, there is no coupling between the
stator windings unless current flows in the rotor windings.

Electrostatic coupling coeficients can be varied either by moving
one condenser plate with respect to another or by moving dielectric
material between the plates. A phase-shifting condenser that varies
the phase of a sine wave by producing sines and cosines uses the latter
method (see Vol. 17, Sec. 9-1, of the Series). This method is also used
for transmission of angle data in the MI'T differential analyzer.?

1 The Radiation Laboratory Series, Vol. 17, Chap. 10, “Rotary Inductors.”
2 Bush and Caldwell, “A New Type of Differential Analyzer,” Jour. Franklin
Inst., 240, 4, 278, October 1945.
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Uses.—An important application of electromagnetic devices of this
sort is to the transmission of rotation. Three-phase devices (svnchros)
are used chieflv for this purpose. In this application little attention is
paid to the production of sines and cosines as such; accuracy is measured
in terms of angular errors rather than deviation of voltage from a sine
function of rotation.

The same devices, but more commonly the 2-phase ones, may be
used to produce voltages proportional to the sine and cosine of the
angular position of the rotor. Theyv mayv enter into a-c computing
systems, in which case a sine-wave carrier is modulated by the rotor
position; they may be used to produce sine and cosine components of
triangular or trapezoidal waveforms for PPI sweeps (Vol. 22); thev may
be used with direct current and a specially built rotor to detect saturation
resulting from d-c¢ flux in null devices producing an angle output.

A 2-t0-2 phase resolver may be used to rotate rectangular coordinates
by resolving cach of two inputs into components along directions defined
by the two output coils; it may also be used, together with a servomech-
anism, to transform rectangular to polar coordinates (Sec. 6-3).

Either resolvers or phase-shifting condensers may he used to produce
a phase shift varying linearly with shaft rotation. This results from
combining sines and cosines. The two inputs are sin wt and cos wt;
these are multiplied within the device by cos ¢ and sin ¢ respectively
and added to produce

cos ¢ sin wl + sin ¢ cos wl = sin (wt + ¢).

Phase shifts of this sort are used in range measurement (Vol 20, Chaps.
5 and 6).

Theory of Operation of A-¢ Resolvers: Sources of Error—"The operation
of an a-c resolver of the tyvpe shown in Fig. 512 may be analyzed simi-
larly to that of an audio transformer. Differences lie in the variation
of coupling coefficient with rotor position and the somewhat lower maxi-
mum value of coupling for the a-c resolver than for an audio transformer
(for the Bendix resolver XD-759542, k = 0.9). An analysis‘in Vol. 17,
Chap. 10, shows that, subject to certain assumptions, the input impedance
is independent of rotor position. The frequency response of resolvers
depends on the purpose for which they are designed; that of the Bendix
resolver is shown in Fig. 5-13. Devices for resolving complex waveforms
with high-frequency components may have a more uniform response or
wider bandwidth.

Some of the errors of audio transformers as computing elements are
found in the same form in resolvers. Nonlinearity of the iron core pro-
duces distortion of the output waveform and variation of stator-to-rotor
voltage ratio with input voltage. For the Arma resolver (No. 213044)
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this effect causes errors in output voltage of the order of 0.14 per cent
of maximum output for voltages from 0 to 80 volts rms at 400 cps.
The effect of interwinding capacitance may also be observed if a resolver
is operated with the output winding floating. The voltage ratio also
varies with temperature, this variation being a function of the load as
well.

One of the most important criteria of performance in synchros and
resolvers is the deviation from sinusoidal output as a function of rotation.
If the input is to a stator winding, it might be expected that the rotor
would pick up a voltage measuring the projection perpendicular to the
rotor winding of the magnetic field produced by the stator. In order for
this to be true, the windings must be arranged to produce a suitable

-10}+

1 1 -l
100 1 10 100
kc/sec
Fia. 5-13.—Approximate frequency response of Bendix resolver (stator-to-rotor ratio).

field. For any given arrangement of rotor windings, there are only
certain field configurations for which a sine output can be obtained.
Moreover, it is desirable that the field configuration be unchanged by the
rotation of the rotor. This condition is fairly easily satisfied for air-
core devices; but when there are iron cores, more care in design is
necessary. Changes in the field may occur if the rotor is rotationally
asymmetrical (‘‘dumbbell” or ‘“umbrella’’ type) or if at certain orienta-
tions winding slots of the rotor come opposite slots in the stator. This
latter effect is reduced by designing the rotor or stator so that the slots
of one are skewed with respect to those of the other (see Fig. 5-12).

If a load is connected to the output terminal of a resolver, certain
errors may result. The input impedance of a stator will vary as a func-
tion of rotor position. Even if the input is supplied from a sufficiently
low-impedance source, the output impedance will vary with rotation
and the resulting variable loading will cause deviations from a sine func-
tion. For an Arma resolver, however, a 20,000-ohm load has negligible
effect (<0.05 per cent) on the sine-function output; and for some pur-
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poses these resolvers have been connected in series! so that the output
of one is the input for the next.

When two windings at 90° to each other are to be used either in
producing the sine and cosine simultancously or in produeing the inverse
tangent by a null method, errors may arise from the relation of one of
these windings to the other. Their relative angle may differ from 90°;
the maximum gain ratios from the two windings to the same pickup
winding may differ; or the voltages on the windings may be slightly out
of phase. The result of inequality of gains is an error that varies as the
sine of twiee the rotor angle; this may be remedied by the use of com-
pensating resistors? or by the insertion of a gain control in the channel
corresponding to one of the coordinates. If the two input voltages differ
in phase, an error in output amplitude results.  Iiffectively one of the
input magnitudes is multiplied by the cosine of the phase difference. The

R
TC *

Fiu, 5:-14.—Transformer drive with amplitude control.

maximum fractional error in output amplitude due to a phase difference
of ¢ radians between the input voltage is ¢2/2 (for small ¢).

Driving Circuits for A-c Resolvers.—Resolvers and synchros may be
excited from an a-c¢ line or from a transformer connected to an a-c line.
This method is commonly used with syvnchros when the object is to
transmit angular information. It may be used to produce sines and
cosines but will not allow the general operation of multiplication of an
input variable by sine and cosine.

A Variac?® may be used to supply voltage to an input winding of a
resolver; in this case the shaft rotation of the Variac provides the variable
input to be multiplied by the sine or cosine. This method has the dis-
advantage of varying input impedance if it is desired to supply the Variac
from any other source than a low-impedance line. Furthermore, it is
difficult to attain high precision (0.1 per cent) with Variacs.t

If it is desired to excite an input winding of a resolver with voltage
from a potentiometer having a resistance of several thousand ohms, an

1P, Weisz and B. Miller, “Transformation of Rectangular Coordinates Using
Arma Resolvers,” NDRC14-293, July 10, 1944,

2 Ibid.

3 See Sec. 3-11.

4 H. S. Sack at Cornell University has done considerable work on precision Variacs
(private communications). See also Chap. 3.
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impedance-transforming device is usually necessary to prevent excessive
loading of the potentiometer. Low output impedance is desirable in
order that variation in input impedance with rotor position will not
affect the voltage on the input winding. Such a device may be a step-
down transformer, a cathode follower, or a more
elaborate type of feedback amplifier.
A potentiometer may be used to vary ampli-
tude of the voltage impressed on the rotor (Fig.
5-14). The potentiometer P is the amplitude con-
trol. In order to reduce the loading of this o—|
potentiometer, a stepdown transformer T is in-
cluded. The input impedance at the primary of
the transformer is essentially that of the reflected
resolver-rotor impedance and thus can be quite
large if a suitable value of step-down ratio is = =
chosen. It should be noticed, however, that the Fré: 5'15é;v};1rate'°i““it
potentiometer represents a variable internal gen- ’
erator impedance and together with the reflected inductance constitutes
an RL series circuit in which the R is not a constant. This results in a
variable phasing of the voltage impressed on the rotor, which cannot be
tolerated in many applications. In order that a constant-phase voltage
be impressed, the tuning capacitor C is included. This results in a
resistive circuit in which the phase
shift is independent of potentiom-
eter setting. Since the @ of the
circuit is low, the value of the
tuning capacitor required is not
critical. The usual commercial
10 per cent tolerance capacitors
are suitable in most cases. This
will, of course, restrict the fre-
quency band over which the
resolver can be used.
A simple type of vacuum-tube
Tuning aeizgli\aegr driver is an amplifier with the
driven winding in the plate circuit
(Fig. 5-15). This circuit provides
= amplification, but the gain varies
Fia. 5-16.—Cathode-circuit driver. with tube characteristic. If
greater stability is desired, a cathode follower may be used, with the driven
winding in the cathode circuit. A parallel tuning capacitor may be added
to increase the range of operation. Cathode bias may be obtained by
‘using a parallel RC in series with the load (Fig. 5-16). Both these cir-

+
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cuits have the disadvantage that the d-c plate current passes through
the driven winding, tending to saturate the core of the resolver.

Figure 517 shows two precision drivers for resolvers, discussed in
detail in Vol. 18 of the Series. The circuit of Fig. 5-17a is essentially a
cathode follower, but the d-c plate current is not allowed to flow through
the winding being driven. With an Arma resolver stator as load, this
circuit operates to 60-valt rms output with a maximum departure from
linearity of 0.08 per cent; substitution of tubes causes variations in gain of
+0.25 per cent. Figure 5-17b shows a two-stage driver circuit in which
tube-substitution effects cause errors of 0.1 per cent or less, up to 20-volt
rms output.

+250 . ) +250
Arma Stator
resolver 220k 220k of Bendix
stator < resolver
51M
5.0
——, o1l
L ZZOki
3
=_
£ =

(a) (%)
116, 5-17.—Precision driver circuits for resolvers. (a) Bingle-stage driver for Arma resolver;
(b) two-stage driver for Bendix resolver.

If high aceuracy is required, the output windings should operate into
high-impedance loads, preferably grid circuits. Current flow due to low-
impedance loading sets up corresponding fields within the resolver.
These fields lead to interaction between the input windings in the case of
2-phase inputs (see Vol. 22 for information on sweep drivers).

D-c Resolvers—A resolver! may be used to compute the inverse
tangent of a ratio of two inputs (Sec. 5-12). If voltages measuring z
and y are impressed on two stator windings, the resultant magnetic field
is at an angle tan~! y/x from the r-axis; the rotor may then be oriented
perpendicular to the magnetic field by means of a servomechanism.
This can be done fairly easily with alternating voltages (Sec. 6:9), for
the error voltage picked up by a rotor winding may be used to actuate
the servomechanism.

A similar operation is possible with d-c voltages representing z and
y. It is necessary in this case to use a pickup element on the rotor that

' H. 8. Sack et al., Preliminary Report No. DCR-1, Cornell University, June 28,
1945,
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indicates orientation in a steady magnetic field. Such an element is a
magnetic core (Mo-permalloy or Mumetal, for example) excited by an
a-c carrier and having two output coils connected in series opposition.!
The output will be a second-harmonic signal which reverses in phase
when the sense of d-c saturation of the core reverses. This signal
may be fed to a phase detector that produces a d-c error signal for the
servoamplifier.

The rotor of an Arma resolver was replaced with a d-¢ pickup element,
and accuracy tests were made. For some orientation of the pickup ele-
ment the effect of the earth’s magnetic field was found to cause significant
errors. If this effect was reduced either by proper orientation or by
magnetic shielding, operation over the entire 360° was possible with
errors not exceeding 0.5°.

5-7. Sine and Cosine Potentiometers.—Frequently it is convenient
to employ a potentiometer to produce an output voltage proportional to
the product of an input voltage and the sine of the angle through which
the potentiometer shaft is rotated. If both the sine and the cosine funec-
tions are produced by the same potentiometer, the entire resolving opera-
tion has been performed;in some cases, however, it is necessary to use two
independent potentiometers wiify the shafts displaced by 90° in order to
develop both the sine and cosine functions. A discussion of sine poten-
tiometers will be found in Vol. 17, Chap. 8, of the Radiation Laboratory
Series.

Curve-fitting methods (Sec. 5-2) ecan be used to produce the sine
funetion. One example is the construction of nonlinear potentiometers
(using a shaped card, nonlinear wire spacing, etc.) which will produce a
voltage or a resistance varying as the sine of shaft rotation. Such poten-
tiometers are restricted in range to 4 90° or less, since the derivative of
resistance with respect to rotation cannot change sign. If computer
requirements necessitate a smaller range of angle, the maximum angle
can be further restricted and the accuracy thereby increased.

Rectangular-card Sine Potentiometer: Theory of Operation.—If a' con-
tact 1s moved in a circle on the surface of a potentiometer card, the varia-
tion of potential with rotation is sinusoidal and unlimited rotation is
possible. This principle is used in the rectangular-card sine potentio-
meter developed at the Radiation Laboratory; the construction of a
typical sine potentiometer is shown in Fig. 5-18, and a schematic diagram
in Fig. 519.

As is shown in Fig. 518, the card is of rectangular form with closely
spaced wire wound continuously and may be rotated by the input shaft.
Four brushes fixed to the case of the potentiometer and arranged geo-

L See Chap. 3 for discussion of magnetic amplifier.
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metrically as shown assure proper contact pressure and alignment. Both
sine and cosine functions may be obtained.

If E is the voltage impressed across the two ends of the winding and
the dimensional constants are as shown in Fig. 5-19, expressions for the

Fia. 518.—Sinusoidal potentiometer, type R 14. The performance is indicated by
the following data: angular resolution + 1°;life 5 10% revolutions at speeds up to 120 rpmi;
weight 1 1b 6 oz; diameter 4} in.; length 4} in.; winding resistance 32,000 ohms; applied
voltage 300 volts or less; 305 turns per inch of 0.0025 =in. diameter nichrome wire; Formex
insulation; brush force 1 oz; and resolution 0.3 per cent of peak voltage.

output voltages can easily be developed. It is to be noticed in particular
that the axis of symmetry of the brushes does not necessarily correspond
to the axis of rotation of the card.
¥ 7" The significance of this will be dis-
cussed later.

The card may be considered to
have a potential gradient in the
¥ P y-direction equal to £/y and in the
z-direction of E/2nz as a result of
the potential drop along each turn
(n being the total number of turns).

The resultant of these, if the effect

j[_ of wire resolution is neglected, is a

uniform potential gradient at a slight.

~ Fia. 5:19.—8chematic diagram  of angle to the y-axis. It is from this

;‘,’;eb‘;?fsir;ts‘f"“ete"' Points @, b, e and d  givection that brush rotation will be

measured. Any brush moving in a

circle relative to the card will then have a voltage with respect to ground

that is the sum of a term varying as the cosine of the brush angle plus a
constant term equal to the voltage at the center of the circle.
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When the card is rotated, cach brush in effcet moves over the card
in a circle whose center is the axis of rotation ol the card.  Thus if the
voltage difference between any two brushes is taken as the output, the
constant terms cancel and the difference is proportional to the cosine of
the angle of rotation, measured from the angle at which the difference is
amaximum. (Forcalibration purposes, greater aceuracy can be obtained
by referring angles to the position of zero output.) The two voltage
differences between pairs of diametrically opposite brushes will be pro-
porttonal to the sine and cosine of rotation if the four brushes are mounted
accurately at the corners of a square. When the output differences arve
used in this way, the axis of rotation of the card need not correspond
accuratelv to the geometrical center of the brushes.!

If the outputs from two of the brushes are used, without subtraction,
"as sine and cosine components, additional errors arise from lack of coin-
cidence of the brush center and the axis of rotation.  The angle subtended
at the axis by the brushes may not be exactly 90° so that the relation of
the outputs is not that of sine and cosine; and the brushes may be at
different radii from the axis.

The performance? of the RIL14 sine potentiometer is indicated by the
following data. When it is used as a resolver the angular accuracy is + 3°
and the amplitude of the resultant vector is constant to within +0.65
per cent. If the voltages from single brushes are used, as mentioned
above, the error may be several times greater. Iven when the potenti-
ometer is vibrated with an acceleration of 10g only slight evidence of
noise is observable. The amplitude of this noise is less than % per cent
of the maximum signal. To remove this noise as well as brush noise,
RC-filters are sometimes used at the output terminals.

The angle through which a brush must be rotated to go from one
wire to the next varies from 0.17° when the brush is moving at right
angles to the turns of wire to about 4° when the brush is moving parallel
to the wire. The effective resolution of the potentiometer, however, is
the angular resolution of the rotation of the vector whose components
constitute the outputs, that is, the angle of the small but finite step with
which the vector rotates. This angle varies from 0.17° when two of the
brushes are moving normally to the wires to 0.24° when all four are at
45° with respect to the wires.

Input and Output Circuits.—Since the voltages from the two opposing
brushes must be subtracted from each other in order to obtain the sine
function, circuits associated with the potentiometer must be capable of

LA detailed discussion of the manufacturing problems involved in connection
with such a potentiometer will be found in P. Rosenberg, “Sinusoidal Potentiometers
Types RL10CB, RL10CD, RL10E, RL14,” RL Report No. 423, Aug. 16, 1943,

% This material is taken from Vol. 19.
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doing this. If high accuracy is to be obtained from a potentiometer
having the desired linearity, it must be associated with output circuits
having high impedance relative to the potentiometer resistance. In order
to prevent loading, the usual practice is to connect the brushes directly
to the grids of vacuum tubes. Figures 520 and 5-21 give two repre-
sentative output ecircuits that are frequently used. If both sine and
cosine outputs are desired, an output circuit is, of course, necessary for
each component.

Figure 5-20 illustrates the type of circuit possible when a grounded
voltage source is used. The voltage source can be either alternating or
direct current in both Figs. 5-20and 5-21. One end of the sine potentiom-
eter is grounded as in Fig. 5-19. Thus the twu output voltages must

+ +

Fte. 5-20.—S8ine potentiometer with F1a. 5-21.-—Sine potentiometer with floating

grounded supply. supply.
be subtracted to eliminate the constant term. This can be accomplished
by employing a so-called ‘‘difference amplifier”’ of which the circuit
shown in Fig. 5-20 is an example.! The output leads are connected
directly to the grids. The difference amplifier shown develops a balanced
output; if this type of output is found undesirable, however, a difference
amplifier developing an unbalanced or ‘“single-ended” output can be
used.

Figure 5:21 presents a typical circuit in which an unbalanced (““single-
ended’’) voltage can be obtained directly from the potentiometer itself.
As shown, this requires the use of a floating voltage supply, which, as
above, can be either alternating or direct current. Such a supply
might, for example, be a tachometer generator. Since the supply is not
grounded, one of the two potentiometer brushes may be grounded, and
the voltage measured on the ungrounded brush is the difference between

1 Cireuits for subtraction are discussed in Chap. 3 of this volume, and in Vols
18 and 19.
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the two brush voltages. Only one component (either sine or cosine)
can be obtained in this way. This single-ended output can be amplified
in the usual manner if suitable precautions are taken against loading.
The output circuit shown is a cathode follower. Since a high degree
of linearity in the output stage is necessary in order for the over-all

Center tap adjustment

T
g B HEr:

= S |
Single-ended sine and
cosine outputs

Fi1a. 5:22.—Push-pull a-c supply for sine potentiometer.

accuracy to be maintained, it is of advantage to employ output circuits
with high gain and negative feedback.

Single-ended sine and cosine voltages can also be obtained by sup-
plying the potentiometer in such a way that the center of the card is at
ground potential. This may be done with push-pull a-¢ or d-¢ voltages

C; T
?”g A-¢ output
GT R

D-c output

I'rs. 5-23.—Method of using alternating and direct current simultaneously on sinc
potentiometer.

For alternating current a transformer may be used; if accurate adjust-
ment of the center tap is desired, a control may be provided as in Fig.
5-22. For direct current an inverting feedback circuit may be used to
produce a voltage that is the negative of a given voltage (Chap. 2).

It is sometimes necessary to obtain both a-¢ and d-¢ voltages that
vary as the sine and cosine of an angle. The circuit diagram of Fig.
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5-23 shows a method by which both signals can be obtained at the same
time. The two separate voltage sources may be paralleled with isola-
tion impedances in series with each to prevent alternating currents from
flowing in the d-c supply and vice versa; or if such currents are not
detrimental to the operation of the circuit, the supplies can be placed in
series rather than parallel, without the isolation impedances.

The voltage from each brush is fed to the control grid of an isolation
stage to prevent loading of the sine potentiometer by the filters. The
a-c difference is obtained by connecting a high-pass filter between the
outputs of the isolation stages; the d-c difference is obtained by connecting
a low-pass filter between the same points. The filter designs are deter-
mined by the degree of separation desired and the phase shift or time lag
permissible.

If a sine potentiometer is
loaded by a resistance between
the two terminals whose voltage
difference is the output, the load-
ing effect may be shown to be the
= same as given for a linear poten-

2 (a) (b) tiometer in Eq. (3). Figure 5-24a
. . ) shows this case. Let e; be the

Fi1g. 5-24.—Sine-potentiometer loading
(z = k;sin8). (a) Loaded sine potentiometer generator Voltage, IR be the total
(-_ircuit; () Thevénin's theorem transtorma- resistance of the sinepot, zR the
tion. . .

fraction included between the
output terminals, and a2 the load resistance. If either the generator
or the output is floating with respect to ground, the circuit may be trans-
formed using Thévenin’s theorem to the form shown in Fig. 5-24b. The
output e, is given by the same equation as that for the linear potentiometer:

are;

«+ z(1 — z)

€ =

For large a, the maximum error (expressed as a fraction of the voltage
across the potentiometer) occurs at z = % and is approximately equal to
0.15/a. A similar derivation may be carried out for the case of the
single-ended output when the potentiometer is supplied from a center-
tapped transformer of low output impedance; in this case the maximum
loading error for large a is 0.10/a times the maximum output.

5-8. Mechanical Methods.—Multiplication by sine or cosine of an
angle is an operation that is done mechanically in many cases with suit-
able accuracy, although extreme accuracy (comparable to that obtainable
with some electrical resolvers) requires very precise machining and con-
siderable expense. Figure 5-25 shows an elementary form of crank and
crosshead which can be used when a very crude sine or cosine function
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is permissible. The crank arm A is rotated by a drive shaft through an
angle, and the output shaft B is actuated through the crankpin a by the
connecting rod C; the displacement of the crosshead B is roughly pro-
portional to the sine or cosine of this angle.

The departure of the output shaft displacement from a sine function
is rather large unless the connecting rod is very long with respect to
the crank arm.

F1e. 5-25.—Crank and crosshead.

The Scotch yoke (see Vol. 17) is a similar mechanism with modifica-
tions that overcome the poor response of the simpler unit discussed above.
Figure 5-26 illustrates a simple form of Scotch yoke. Again crank 4 is
rotated through the given angle, and the output linear displacement
along axis XX is proportional to the sine or cosine of this input angle.
In this case, however, the response is mathematically correct if practical
considerations such as tolerances, clearances, and surface smoothness
are neglected. High accuracies -
are obtainable even with all these m
factors present, though at the
expense of increased cost and
difficulty of production.

The difference between the
two units is that the Scotch yoke x - :%‘-——X
includes a slide and a channel
that restricts the motion of the
slide to an axis perpendicular to §/-c

the axis of displacement XX. As
the crank arm rotates, the slide
c is dlspl.aced along the vertical Yro. 5.26.—Scotoh yoke.
axis, causing a horizontal move-

ment of the output shaft B. The slide can be made integral with the
XX channel unit in a compact mechanism. The inaccuracies in such
units are those due to the need for clearance between the slide and the
channel. This clearance introduces a backlash that in systems of high
accuracies may be intolerable. Other less important points of error are
the clearances necessary in the crankpin a and the bearings and so forth.
In general, it may be said that the obtainable accuracy improves with

— a
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the size of the unit, since with equal manufacturing methods the per-
centage clearance (actual clearance taken with respect to the size of the
parts) decreases with increase in unit size.

Input angle information must, of course, be introduced mechanically
so that the crank arm can be rotated through the desired angle. The
displacement of the output shaft can be used in its mechanical form or
may be converted into electrical information. An example of this change
of representation is the use of the shaft to drive the arm of a linear poten-
tiometer producing a voltage varying as the sine of input-shaft rotation.

Scotch yokes are commercially available. The more important fac-
tors that must be considered in evaluation of the relative merits of
mechanical as opposed to electrical resolving schemes are accuracy
obtainable with respect to accuracy desired, relative cost, size, weight,
and associated electrical or mechanical units necessary for driving and/or
obtaining output information. A general comparison of electrical and
mechanical methods is given in Sec. 2-13.

5:9. Waveform Methods.—The sine wave, produced fairly easily

by frequency-selective circuits,

Conesltant e cos 6-¢,=0 Mmay be used to produce sine and

exciting voltage G=cos-t Logec1 2 cosine functions of variables other
2} € . i

than time. Two methods may be

| 5;:;?';’;:2" mentioned, both of which make

| & cos 6 . use of time selection (Vol. 19,

i 2 Chap. 10, of this series). I’rob-

0 : n ably the simplest in principle is to
Oslﬁgfl;t 1 select the voltage corresponding to
: a given delay from the reference
O Serve time and to store, or ‘‘remember,”’
Servo motor amplifier this voltage during the rest of the

repetition interval. The input
time delay may be generated from
a voltage by means of a linear
delay circuit; the entire operation, then, produces a voltage proportional
to the sine of an input voltage.

An alternative method has been developed! in which a variable-
width rectangular gate is used to select a portion of a sine wave, and the
average or integral is taken as the output. If the gate begins at a zero-
voltage point of the sine wave, the integral measures the cosine of a
quantity proportional to gate length.

6-10. Inverse Trigonometric Functions.—The inverse sine or cosine
may be produced by connecting a sine-producing device and a servo

! B. Miller, P. Weisz, and W. F. G. Swann, “Circuits Using Resolvers and Coordi-
nete Transformations by Means of Electrical Networks,”” NDRC Division 14 Report
No. 288.

Fic. 5-27.—Device for producing inverse
sine and cosine.
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according to the methods of Sec. 2-5. An example of this operation in
which a resolver is used is shown in Fig. 5-27. The voltage e,, together
with the resolver output e; cos 8, is fed into a differential servoamplifier
that causes the servomechanism motor to turn the resolver rotor until
the difference between the two amplifier inputs is zero. The shaft of
the resolver rotor is then at an
angle cos~! (es/e;) from its refer-
ence position. By redefining the
reference position the inverse sine

can be produced. i

The inverse tangent may be ,I\mlg_Q_QJ—oel (Contstantonage)
o exciting v
produced by a similar servomech- !

€

| 1 82

anism arrangement if  both Bt g Error
stators of the resolver are excited O - signa!
and the rotor is servoed to a null. servo
Either an a-c or a d-c resolver (Sec. Servo motor amplifier
5-5) can be used for this purpose.

I'té. 5-28.—Device for producing inverse
tangent and cotangent.

The circuit is shown in Fig. 5-28.
The equation solved, in terms of
the production of separate sine and cosine, can be written

ez c08 8 — ¢y sin 8 = 0,
or
§ = tan—1 2.
€1
This is discussed in more detail in connection with the transformation
from rectangular to polar coordinates (Sec. 6:3). The inverse secant

e;=¢; sec 0

E ‘(@6\/ °€!
Differential
N amplifier

e, cos 6

6 }(Input) €2 Eput) €2

Fia. 5:29.—Device for producing secant and cosecant.

may also be produced with a resolver and servomechanism; the circuit
of Fig. 5:27 will perform this operation provided only that ¢, becomes the
variable voltage and e. the constant exciting voltage.

The secant itself is produced by feedback to the input winding rather
than to the rotor shaft; Fig. 5-29 is a diagram of a device for producing
the secant. A differential amplifier or equivalent device with high gain
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makes e, cos § = ez; as a result, e; = e sec §. By measuring 6 from a
different reference angle, the cosecant may be produced.

The method of amplitude comparison can be used to produce inverse
sine or cosine delays from sine waves if the reference time corresponds to
the proper fixed phase of the sine wave. '

MISCELLANEOUS FUNCTIONS

6-11. Powers and Roots. Powers.—The operations of multiplication
and integration may be used to produce powers of an independent variable
(Vol. 19, Chap. 19 of this series). A straightforward way of producing
a voltage proportional to the square of an input shaft rotation is to per-
form successive multiplications by means of two ganged potentiometers,
the output of the first being fed through an isolating stage to the other
(see Fig. 5-30).

e, (fixed)
Input
shaft6 e, PN ) Output
2
| Cathode E € om )
} follower '
L or driver !

Fis. 5:30.-—Ganged potentiometers for squaring, The maximum value of 6 for the
potentiometers is 6.

Integration may be used conveniently when the independent variable
is time; for example, two successive integrations of a constant voltage
may be used to produce a voltage that is a parabolic function of time
{Vol. 19, Chap. 8, of this series). Squaring can also be done by averaging
(integrating) triangular waveforms of variable duration or amplitude or
by averaging rectangular waves whose amplitude and duration are varied
together by the same input signal.

A precise mechanical device for squaring (capable of accuracy of
0.01 per cent) is the cone-cylinder combination produced by the Libra-
scope Company (Vol. 17 of this series). In this device a wire is wound on
a cone and a cylinder; and as the cone rotates, the rotation of the cylinder
is determined by the length of wire transferred. This length is propor-
tional to the square of the angular rotation of the cone, since the turns
of wire are uniformly spaced along the axis of the cone, and the radius is
therefore proportional to the angle through which the cone has rotated.
The device may he considered an integrating tvpe of squarer, for the
length of wire ! unwound from the cone or wound on the cylinder is

l=/rd0,



Sec. 5-11] POWERS AND RrROOTS 121

where r is the radius of cone or cylinder and where 6 is the angular rota-
tion. For the cylinder, r = ry, a constant; for the cone, r = k. The
fact that the same length of wire that is unwound from one is wound on
the other is, in effect, an ‘“equal sign,” so that

/rod01 = /kﬁzdez,

where 6, is the rotation of the cylinder and 6, is the rotation of the cone
or

k6

2

1‘001 =

if the initial conditions are properly chosen. Either 6, or §; may be an
input, so the device may be used either for squaring or for the extraction
of square roots.

For low-precision applications (errors of 5 or 10 per cent) parabolic
functions may be approximated satisfactorily by the characteristics of
certain vacuum tubes (Vol. 19, Chap. 19, of this series).

Vacuum-tube characteristics may be used to greater advantage if a
push-pull method is employed to cancel out odd-order terms in the
Taylor expansion of the characteristic (Vol. 19, Chap. 19, of this series).

A quadratic function of rotation may be produced by short-circuiting
the ends of a potentiometer together; the resistance between the arm
and this common terminal is then

R = %’ (1 — y?),
where R, is the potentiometer resistance and y is the motion of arm
from center of potentiometer as a fracticn of its peak positive or negative
excursion, that 1is, limits of rotation correspond to y = +1. This
resistance element is used in approximaling the secant function (Fig.
5:10); it is also used as a squaring element in triangle solution (Sec. 6:3).

Powers and roots, including nonintegral exponents, may be produced
by means of logarithmic devices.

Roots—Any multiplying or integrating device may be used to produce
powers, and the techniques discussed for producing inverse functions
may be used to produce roots. The cone-cylinder device may be used
for the production of square roots as well as squares. A parabolic wave-~
form may be used with a coincidence device to produce a square-root
funetion. Ganged-potentiometer devices may be used with servo-
mechanisms to produce roots. Iigure 5-31 shows such a device for pro-
ducing the cube root. If 6 is the angle of shaft rotation of the three
ganged-potentiometer arms and 8,. 1s the maximum rotation of a potentiom-
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eter, then the voltage output is €;(8/8~)?. The servomechanism rotates
the shaft until this quantity is equal to the input voltage e:; the shaft
rotation is then proportional to the cube root of e..

An approximation to the square-root function by means of a linear
potentiometer is given in Sec. 5-4.

5-12. Exponertials and Logarithms.—Exponential functions arise
frequently in physics and are usually connected with differential equa-
tions in which a function is linearly related to its first derivative. An
example in electronics is the dependence of diode current on electrode
voltages at low currents; an example of an exponential waveform is that
resulting from the application of a step function to an RC-network
(Vol. 19, Sec. 11-5). 'The most obvious use of exponentials in computation
is the use of one physical system obeying an exponential law as a model

Isolating stages
(cathode followers)

e (fixed) /
Differential
S

ervo il
amplifier

€

Fra. 5-31.—Device for producing cube root.

for another system, more difficult to construct, that obeys the same law.
Thus if it is desired to compute automatically the attenuation of light
intensity resulting from Lambert’s exponential absorption law,! an expo-
nential waveform generator might conceivably be used together with a
linear delay circuit and a clamping circuit to change the representations
of the input and output respectively.

If the physical system is such that the independent and dependent
variables can be interchanged, the inverse of a function can be produced.
This method has been used for the production of logarithms from expo-
nential diode characteristics (Vol. 19, Chap. 9, of the Series) and might
be used to produce logarithms from exponential waveforms. The
automatic production of logarithms by electronic means is likely to have
considerable application because logarithms can be added and put into
an exponential producing device, the result being multiplication. The
ability to perform a multiplication in the order of a few milliseconds is of

3] = Jee~2*, where I = intensity at distance z;

- Iy = intensity at x = 0;
a = absorption coefficient.
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considerable significance in computers involving combinations of opera-
tions, as will be pointed out in Chap. 6. At the present writing the chief
multiplying device that has found wide application is the potenti-
ometer, in which one of the inputs must be a shaft rotation. This limits
the speed of computation considerably, since the
time required to orient the shaft must be approxi-
mately 10~! sec.

Contact Reclifiers.—It has been observed that
the impedance of certain metal contact rectificrs!
follows the law E = r log ¢ over a substantial
range of their forward characteristics. Commer-
cial copper oxide rectifiers of various makes and
sizes were found to follow that law consistently for
a current range of 1/50 above a potential of
about 0.070 volt per contact layer. Certain mi-
crowave mixer-type germanium contacts follow
the logarithmic law through a current range of at
least five decades, from the lowest measured value
of 1 pa (with 0.16 volt) up to about 10 ma (0.50

i i . Fig. 5-32.—Voltage
volt) in any circuit and up to about 0.25 amp divider. R, = ohmic
if the then appreciable current-proportional volt- fi"s'tr;‘;oc';?“t Z°f r_eclf;:;r’itrﬁ:
age drop within the semiconductor is canceled. mic contact resistance;

The simplest electrical circuit for obtaining £ = source resistance;

. . .. . . . m = meter resistance.
logarithms is the voltage-divider circuit shown in

Fig. 5-32. The output of this voltage divider is strictly logarithmic
only (1) if the ohmic resistance R, within the rectifier is negligible com-
pared with the logarithmic contact resistance Z, (2) if the source, or
series, resistance K, is large compared with Z, (3) if the load, or meter,
resistance I, is large compared with Z.

An alternative circuit for the production of
logarithms is the bridge circuit shown in Fig.
5:33. For convenience, symmetry will be as-
sumed, with By = Rs, R3 = Ry, Z3 = Z,.

Nonlinear bridges of this type are known
to have an output vs. input characteristic as
plotted in Fig. 5-34 for negligible load current
(Rm — =). All curves were plotted with
R, = R, = 100 ohms, Z3 = Z, each two layers
of 0.85 sq. in. copper oxide rectifiers in series,
and with values of R; = R, varied from 0 to 100 ohms as indicated.

F1a. 5:33.—Bridge circuit.

1 This material is taken from H. E. Kallmann, ‘“Three Applications of Nonlinear
Resistors,” RL Report No. Ja-5, Oct. 19, 1945, Part III. This report is to be
published in Electronics.
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The larger these resistances, which are in series with the rectifier contacts,
the higher the input voltage at which the bridge balances (£, = 0).

In particular, when R, = K. = R3; = R, = R, the output voltage
E.. no longer reverses. It then presents an exact replica of the voltage
E, on the copper oxide rectifiers, rising logarithmically with rising bridge
input. This result will be scen more clearly if the curve R; = R4 = 100
is replotted on a semilogarithmic scale as in Fig. 5-35. The straight line
thus obtained indicates a logarithmic relation over an input range of
34 db.

An evident merit of the bridge circuit is that the residual resistivity
R; of the contacts can be allowed for in the adjustment of the resistances
Ry and 7. As in the voltage

divider circuit, the output of the o, Yotsin
bridge circuit departs from the B:“Tr ________________
desired law at the low-current end 6
of the range when Z grows com- 4l
parable to . The bridge circuit
Ry=R,=100 0 2}
Z3=Z,=2layers 0.85sq in
+04+ Copperoxide rectifier 1
Ry=R,= 08 [-34db
+03
) 100 N 06 -
3 +02 Ry=R =75 {1 04k
S +0.1+
N
0 0 NN25 L\ 50 0zl
i
-01 1 ‘ \ "l S S B
0  +05 +10 +5 420 g3 4 . ; . Qut
Volts E, 0 02 04 06 08 ma
I't¢.  5-34.~——Characteristics of bridge Fic. 5-35.—Logarithmic plot of bridge
circuit. characteristic.

has the advantage that it may be operated at a much lower input voltage
E,... without exceeding a specified error.

Logarithmic circuits lend themselves to combinations for the purpose
of electronic multiplication or division. Fig. 5-36 shows, as an example,
the combination of two log bridges. Their outputs are connected in
series and fed, with opposite sign, to a meter, which thus reads the differ-
ence of their output currents. The current is then

Im, = im, = Alog By — Alog E; = Alogg—'l,
2

or proportional to the logarithm of the ratio of the two bridge inputs.
The meter can thus be calibrated directly in decibels with a linear scale.
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Two small resistors p with adjustable tap are shown in Fig. 5-36 for the
initial adjustment of bridge balance. A model with each £ = 200 ohms,
each Z one layer of 0.85 sq in. copper oxide, p = 5 ohms, and a meter for
100 pa full scale with R, = 1800
ohms was found reliable within
42 per cent of full scale for either
input voltage varying from 0.14 T—

*db

A
)

0.1 ma
full scale
zZ Z

to 7 volts, that is, up to ratios of
+35 db.

i circuits of this sort are to
be used to obtain the product of
rapidly varying waveforms, it is
necessary to compute automati- = ’ =
cally the antilogarithm of the Fic. 5-36.—Combination of logarithmic

. bridges for division.
output current. This may con-
ceivably be done by means of a third logarithmic bridge.

Diodes.—A diode limited to low-current values produces a variation

of current with voltage that is very nearly an exponential. By the use

+ +

a-logy

z ¥
Exponent Exponent
adjustment L adjustment
Differential
+ amplifier
+
Level
adjustment
Output zy = =

F1a. 5-37.—Use of logarithmic diode characteristics for multiplication.

of a large series resistor the current may be made the independent vari-
able, the voltage output then being a logarithmic function of current.
This property has been used in a multiplying device; the grid-cathode
current characteristic of a triode is used to produce a logarithmic varia-
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tion of grid potential, and the grid-plate characteristic to amplify this
variation. Three such devices are combined in a feedback loop as
shown in Fig. 5-37.

5-13. Integro-differential Functions.—As a generalization of the
operations of differentiation and integration,! there are equations in
which a combination of differentiation, integration, and addition is
involved. Such, for example, are the equations of most passive RC-
networks. The simple ‘‘differentiating”’ network (Fig. 5-38) has the
differential equation

C(%(e,-—eq) = %’J

which can be expressed in terms of the Laplace transforms as

£(e,) _  pRC ]
£(esy 1+ pRC

A general expression for the ratio obtainable from a linear network is
Ni(p)/f2(p), which can be reduced to the quotient of two polynomials.

Input waveform Differentiating network Output waveform

F1c. 5-38.—RC differentiating circuit acting on a rectangular waveform.

Uses.—In the problem of automatic range tracking (Chap. 8, Vol. 20)
functions of this sort are used. A typical automatic range-tracking
system consists essentially of two integrators and a feedback loop includ-
ing the error-measuring device and producing the output range equal to
that of the target. Considerations of loop stability, however, make it
desirable to use a transfer ratio (1 + p7T)/p? instead of the ratio 1/p?,
which would correspond to two integrations. Additional factors
1/(1 + pT,) are produced by the necessary data-smoothing networks,
where T, is the smoothing time constant. Similarly, in the design of
stable high-performance servomechanisms or feedback amplifiers it may
be desirable to use integro-differential functions of this sort in the feed-
back loop.

Another application of integro-differential functions is in the produc-
tion of shaped waveforms. An easily available waveform may be fed
into a function-producing circuit and a desired function or an approxima-
tion to it obtained.

Realizable Functions.—By means of passive RLC-networks a consid-
erable variety of functions may be produced. In each case the function

! See Vol. 19, Chap. 2, and Vol. 18, Chap. 1, of the Radiation Lahoratory Series.
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can be expressed as a fraction whose denominator is a determinant and
whose numerator is one of the minors of the determinant. Thus the
numerator cannot contain higher powers of p than the denominator.
This restriction may be removed by the use of negative-feedback
amplifiers. If a high-gain amplifier is connected as shown in Fig. 24
(Sec. 2'5) and if the admittances of the input and output networks can

€o

¢; /i (p) Ifz(p)

R € Hp)_ 1
(@) MN———f— Z05=10m
® »C

1

£,(p)_pCR,
(b)"WV Ii(“‘w‘” %,(p) 1+ 8CR,
1+pCRl = &

R, fi(p) R
(¢) R f;(p)=pczez+§f~

5(p)
(d) f-[{/&]%w/vo ﬁ;%‘
pCl+%1 _j__ R, +___ ( +PC)(R2+T2)

FiG. 5:39.-—Transfer ratios of networks with feedback amplifiers.

be expressed operationally by fi(p) and f.(p) respectively, then the ratio
of the transforms of output and input is very nearly

£leo) _ _ fi(p).

£(e:) f2(p)

In this case, f:(p) may be made as simple as desired; if network (b) is a
resistance, fo(p) is a constant. Several examples of circuits of this type
are shown in Fig. 5:39. An arrow is used to indicate that the junction
of the two networks is held at ground potential by the amplifier even
though no current flows out at that point. Network (a) is that of a
Miller feedback integrator. Network (b) produces a function that might
as well be produced by a simple RC ‘‘differentiating” network; it is
shown to illustrate the type of transfer ratio for which a passive network
rather than a feedback amplifier should be used. Network (c) illustrates
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the principle that additive terms may be had by using paraltel impedances
in the input circuit; similarly, network (d) shows how additive terms are
also introduced by series elements in the output eircuit.

Realizable Output Waveforms.—If the input to a passive network is a
step function, the output will be a combination of exponentials and
damped sinusoids (Vol. 19, Chap. 11). This corresponds to the fact that
the quotient fi(p)/f2(p) can be expanded in a sum of partial fractions
corresponding to the roots of the denominator. If a feedback amplifier
is used with the network, the possibility of the root p = 0 enters; for a
step-function input this corresponds to a linear output function, or, in
the case of a double root, a quadratic function, etc. Thus the general
funetion available in response to a step-function input is a linear com-
bination of exponentials, sinusoids with exponential envelopes, and
powers of { (time measured from the step). If more complicated
functions are used as inputs, it is difficult to say in general what outputs
are realizable, but the output can be caleulated in any case from the
input and the response to a step function by means of the superposition
integral or convolution theorem.?

!'Vol. 18, Chap. 1, of this series; or Gardner and Barnes, Transients tn Linear
Systems, Wiley, New York, 1942, pp. 2284.




CHAPTER 6
GROUPED OPERATIONS

By D. MacRag, Jr.

6-1. Introduction.—The computing devices to be considered in this
chapter are intermediate in complexity between those of the preceding
three chapters and the examples to be discussed in Chap. 7. The term
“grouped operations” will include the production of a function or of a
closely related pair of functions by combination of the separate devices
described in the previous chapters.

Feedback techniques are important in the combination of operations.
A particularly useful application is in the solution of simultaneous equa-
tions. An illustrative design of a single equation solver using feedback
will be given.

Emphasis will be placed on applications of grouped operations to
computation involving radar data. One such application is the auto-
matic computation of the hypotenuse of a right triangle from the lengths
of the legs; this is important in taking into account the effect of altitude
in airborne radar equipment. Another problem, raised by radar naviga-
tion, is that of transforming one set of coordinates into another; several
examples of this process will be given.

Problems Characteristic of Grouped Operations.—There are certain
design problems that arise from connecting several devices. Combina-
tion of two computing elements may necessitate change of representation
of the variables because the output of the first may not have the same
representation as the desired input to the second. It is desirable to
select devices for which the representations of outputs and inputs cor-
respond, but other considerations such as availability and accuracy may
make this impossible, so that a separate device for change of representa-
tion is often necessary. Two of the most common cases where change of
representation is necessary are the multiplication of two voltages and
the use of periodie-waveform computers with d-¢ or a-c voltage inputs.
In the case of multiplication, a potentiometer may be chosen as the most
convenient device available for the operation; in that case, a servo-
mechanism must be used to convert one of the input voltages into rota-
tion of the potentiometer shaft.! In computation using waveforms, the

1 Bee, for example, Illustrative Design of an Equation Solver under Sec. 6-2.
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input variables must often be converted to time delays by means of
linear delay circuits.! '

Consideration of scale factors is also necessary when operations are
combined. FEach separate device has limits of operation? for output
and input; examples of such limits are the ends of potentiometers or the
maximum output of an amplifier. In order to realize highest accuracy
possible with given components, seale factors should be chosen so that
the desired range of computation corresponds to these limits of operation.
Thus, if the range of computation for a variable z, represented by voltage
on a linear potentiometer, is to be @ £ z < 2a, the errors due to random
departures of the potentiometer from linearity can be halved by insert-
ing in series with it a fixed resistance of the same value as the potenti-
ometer resistance. When two devices are connected, however, the two
scale factors determined in this way may differ, and in order to use both
to maximum advantage a scale-changing device should be inserted
between them. For example, if a potentiometer having a rotation of
300° is coupled mechzanically to a sine-cosine device whose shaft moves
through only +30° the potentiometer error will be reduced if a 5/1
gear ratio is inserted between the two shafts.

Problems of impedance or loading are also raised by grouping opera-
tions. If a voltage representation is used, variation of input or output
impedance may cause errors. Ixamples are the variation of output imped-
ance of a potentiometer (Sec. 5-4) and the variation of input impedance
of a resolver with a load on its output winding. These errors may
be kept small if the output impedance of one device is much less
than the input impedance of the following one. In order to satisfy this
condition, it may be necessary to use an impedance-transforming device
such as a cathode follower.

The relative speed of computation of devices that are to be used together
is often of importance. The time required for the slowest device in the
computer to produce sufficiently accurate results (‘‘settling time””)
limits the rate at which the inputs may be changed; if the input varies
sufficiently slowly to cause negligible change in output over a time equal
to the settling time of the computer, these errors can be ignored. The
problem of relative speeds is more serious, however, if a device in the
computer has a minimum speed of computation. An electronic inte-
grator (Sec. 4:7) is a device of this sort, for condenser leakage imposes a
limitation on the maximum time for which the device may be operated
accurately; if 1 per cent accuracy is desired, an operating time of the

1 Bee, for example, Sec. 6-6.
2 A general mathematical treatment of the interrelationship of limits of operation
is given in Vol. 27 of the Series.
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order of magnitude of an hour! may be realized. This limitation is
important if it is desired to combine integration with multiplication. If a
potentiometer is used as a multiplying device, it is necessary for computa-
tion to be relatively slow, for the mechanical information may have a
settling time of the order of 0.1 sec; the integrator, on the other hand,
must work relatively rapidly. These two requirements put fairly close
limits on the time scale that can be used as regards rapid changes of the
inputs. If instead of a potentiometer an electronic multiplying device
with a settling time of 0.001 sec could be used, the integrator could be
operated at a much greater speed, and the usable time scale would be
much longer relative to the shortest interval over which accurate com-
putation could be obtained.

Speed of response is also important in connection with the stability
of computers using feedback loops.
If a slow-operating element such as 5 Szy) l—’r‘\mp"fie' hm
a servomechanism is in series with (%)
faster ones in a loop, the delay in the
loop will be determined by the slow e, 61~ -Block diagram for solution of
element. If slow and fast elements J@y) = 0.
are in parallel feedback paths, the “loop gain’' may be determined by
one path for low frequencies and another for high frequencies.

When several operations are combined, there are sometimes allernale
groupings of the component devices from which the designer may choose.
One of the most important choices is that of whether or not a given equa-
tion is to be solved by use of feedback.

6-2. Feedback and Implicit Functions. Feedback vs. Direet Solution. —
A widely applicable method of solution using feedback (also discussed in
Sec. 2+4) is shown in Fig. 6-1. The implicit function y(z) is defined by
the relation f(z,5) = 0. A method of producing f(x,y) is devised by
combination of operations of the sort described in Chaps. 3 to 5. This
series of operations constitutes the block labeled f(z,y). The output of
this block, which is desired to be zero, is connected to the input of a
high-gain amplifier. The output of this amplifier is fed back, with
proper polarity to reduce the block output, as the y-input to the block
flz,y). The result, if the design is satisfactory, is that the system will
assume an equilibrium state in which the value of f(z,y), the input to the
amplifier, will be nearly zero. The higher the gain of the amplifier the
more nearly will the equation f(z,y) = 0 be satisfied. The variable y is
thus a solution of the equation to a high degree of approximation. There
may be more than one independent variable or input; the variable

L This figure is subjcct to considerable uncertainty. The use of specially insulated
condensers, special diclectrics, and compensation circuits (Vol. 19, Chap. 18) may per-
mit longer operating times. See also Chap. 4 of this volume.



132 GROUPED OPERATIONS [SEC. 6-2

z in Fig. 6:1 may be considered to represent several such inputs. One
possible application of this method is in finding real roots of polynomials
with variable coefficients.

In order to determine whether or not a solution using feedback is
desirable for a particular equation, the designer must compare the com-
plexity of the feedback solution with that of a solution without feedback,
where one is possible. In some simple cases a solution with feedback
is obviously out of the question. For the equation y = x, + x2, there
is no point in using the implicit function y — &1 — z2 = 0 with a feed-
back loop of the type of Fig. 6-1. On the other hand, suppose that the

r Y 4 Output ¥
[ Squarer I [ Multipliﬂ——«——zz )
1 1
H Multiplier ]-——I Ad*der }——»—@

T3

Ty
I Multiplier I—»—I Subtractor Square Adder or | l bivid Output
P ublra rooter subtractor vider Yy =
I,
Squarer
z;

Fia. 6-2.—Block diagrams for solution of quadratic equation. (a) Solution of the
implicit function ziy? + x2y + z3 = 0 by feedback; (b) solution of ziy? + z2y + 23 = 0

—~z2 T Vx2? — 4rixs

using the explicit function y = B
Ty

equation to be solved is the quadratic x.y® + 2y + x3 = 0, where z;,
29, and z; are inputs and y is the output. If the equation has a real root
in the region of operation, a solution may be set up using a feedback
loop of the type shown in Fig. 6-1. A block diagram of such a solution is
shown in Fig. 6:2¢. The output y is applied to a squaring device! fol-
lowed by a multiplier, producing the function zy?; it is also applied to
another multiplier and an adder, producing zy* 4+ z2y + x3. This is
then fed back through an amplifier as described above.

In this case there is the alternative of a solution using an explicit
function according to the binomial formula

1 Squaring may be accomplished by any of the methods discussed in Chap. 5 or
in Vol. 19, Chap. 19
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_ —za + V1l — 412
4 22?1

A block diagram of this solution is shown in Fig. 6-2b. The function is
built up as follows: First s is squared; the product 4zyz; is computed;
and these quantities are subtracted (the constant factor 4 being taken
into account by proper setting of scale factors in the multiplying and
subtracting blocks); the square root is taken; the result added to o
subtracted from —z.; and this quantity divided by 2x,. The computa-
tion of the negative of z2 is not included as a separate operation, because
it has not been stated whether 2. is positive or negative. Comparison
of the two block diagrams shows that the solution with feedback requires
fewer operations and that the corresponding device is probably easier to
build. For cubic and quartic equations the complexity of the direct
solution without feedback increases considerably; in the case of higher-

*1’
ki y?
:;7:{ Multiplier |~ _agder |o—{ amplifier |
i Yy
- sin y
L Sine Qutput ¥

Fia. 6-3.—Block diagram for solution of y2 + sin y 4 z = 0.

order algebraic equations and many transcendental equations there is no
explicit solution in terms of simple operations, so that if a solution without
feedback is to be made, a special nonlinear device must be constructed
by curve-fitting methods. This becomes difficult as the number of
variables increases.

Illustrative Design of an Equation Solver.—To show how some of the
design problems of grouped operations are met, an illustrative design
process will be given for a computer solving the equation

y*+siny +z =0.

Since this equation involves only two variables, the solution might be
computed automatically by the construction of a suitable nonlinear
potentiometer, cam, or similar element. The design to be discussed,
however, does not use curve-fitting methods. A block diagram for the
solution of this equation is shown in Fig. 6-:3. 1t is constructed according
to the method of Fig. 6-1; the functions ¥?, sin y, and z are added to
produce the desired function of z and y; and this function is amplified
and fed back. A corresponding schematic circuit diagram is shown in
Fig. 6-4. Theinput x is represented by a shaft rotation, which is converted
to an alternating voltage by a potentiometer. The amplifier output is
an alternating voltage representing y; the representation of y is changed
to a shaft rotation (which is taken as the output) by a servomotor and
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an amplifier that compares the y-voltage with a potentiometer output
voltage. The y-shaft turns the rotor of a resolver, which is supplied
with the same a-c voltage as is across the z- and y-potentiometers.
The output of a stator winding of this resolver is proportional to sin y
if scale factors have been properly adjusted. The y-voltage is multiplied
by the y-shaft rotation by means of another potentiometer, producing y*.
The voltages representing the three functions r, »? and sin y are then
added by means of the resistance network RR:R,, and the resulting
voltage is the input to the amplifier.

F1a. 6-4.—Circuit diagram of computer for y2 + siny + z = 0.

Some preliminary design considerations may be mentioned in con-
nection with this computation. One of the first factors to be considered
is that of accuracy; without detailed calculation it may be said that the
use of available resolvers (of 0.2 per cent peak output error) and potenti-
ometers of 0.5 per cent peak deviation from linearity will permit computa-
tion with resulting probable errors not exceeding 1 per cent of the range
of output.

Loading of the y?- and z-potentiometers by the adding network must
also be considered. If with available potentiometers and resistors this
error is excessive, cathode followers may be necessary.

As an aid in determining scale factors and defining the necessary
calibration adjustments, the equation solved by the system may be
written including scale factors. Suppose that z and y are defined by
dials on the respective shafts. The dials must be *‘ phased’ with respect
to the shafts so that when the dials read zero, all potentiometers and the
resolver are at positions of zero voltage output. This implies four
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phasing adjustments. If it is assumed that these have been made, the
equations that determine the scale factors of the system can be written.
Let the shaft rotation representing z be 6, = k;x and that representing
y be 8, = ksy. Assume that all three potentiometers have the same
maximum rotation 8, (if they do not, the inequalities can be com-
pensated by adjustment of i, Rs, or Rj;). Let E represent the a-c
supply voltage. It will be convenient to treat the resistance network
in terms of the conductances G, = 1/Ry, G2 = 1/Ry, G5 = 1/R;,

G=G1+02+Ga-

The servomechanism sets the amplified error signal equal to E(6,/6.).
The three voltages entering the resistance network (R, Ri, R;) are
E(8./0,), E(8,/8,)% and E sin 8,. The resolver is assumed to have
unity maximum voltage ratio; if not, this can be taken into account by
adjusting R;. The equation solved is then

G1 6, 1

where A is the gain of the amplifier (see Vol. 19, Chap. 18 for analysis of
adding network). The factor E may be removed from the equation by
dividing through; the solution is therefore independent of variations in E
within the limits for which the above equation holds. Simplifying,

szy

yi = 0.

k| (key)? | Om -
R, + 0. R: + R—asm key =

The scale factor calibration then consists in setting

R 0.k = R, and ks =1,

in order to make the equation assume the desired form. The first two
conditions may be satisfied by adjustment of two of the resistors R,
R:, and Rj; this may be done conveniently by potentiometers in series
with fixed resistors. These adjustments are made in such a way as to
produce correct output values (y) for given values of the input (z); by
this method all components contributing to the scale factors are taken
into account. The condition k» = 1 can be satisfied (if y is measured
in radians) by using a y-dial marked in radians or degrees. When cali-
brated the system solves the equation

2GR @ +siny+z) =

The Solution of Simultaneous Equations.—In three-color printing it is
of importance to be able to solve automatically a set of three simul-
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taneous equations of the type

X=0-00-m{-—-ynNXu+el—-—ml-—yX.
4+ m1 =) — X, +y(l — )1 - mX, + my(l — c)Xm,

4+ eyl — m)X., + em(l — )Xo + emy Xemy,
1=l —-md—-yYs+ -,
Q- —mQ—=-y)Zu+ - -,
where X, X., Y., ete., are constant coefficients, X, ¥, 7 are known
quantities, and ¢, m, and y are the unknowns.

The principal problems involved are the electrical representation of
terms of the tvpe

1 - —m)y(1 — yXu orem(l — y)Yem,

Y
Z

[

i

and the construction of a feedback system whereby all three equations
may be solved simultaneously. A multiplying device based on a proba-
bility principle was developed by Prof. A. C. Hardy of Massachusetts
Institute of Technology for this purpose.! He then combined a number
of these devices to produce the indicated functions that will be denoted
by X’, Y’ and Z'. The differences, or error signals, X — X’/ VY — ¥,
and Z — Z’ were amplified and fed back as the three variables ¢, m,
and y. The question of which variable is to be derived from which error
signal can be determined by an inspection of the partial derivatives of
X', Y', and Z’ with respect to the three variables, and the choice can
be made according to where the feedback would be most effective,
that is, where the partial derivative is greatest. A device was constructed
to solve these equations, and results accurate to within 4 per cent or
better of maximum output were obtained. The entire solution could be
done within approximately 500 usec. The repetition frequencies for the
rectangular waves used in multiplication were approximately 20 kec/sec.

A theoretical analysis of the stability of a device of this sort seems
difficult. It may be said, however, that the stability conditions are
probably no more severe than for three simultaneous linear equations.
The reason for this is that the three third-order equations given above
can be replaced by equivalent linear equations involving the partial
derivatives of X', Y’, and Z', with respect to the variables ¢, m, and y.
These equivalent linear equations will deseribe adequately the behavior
of a system within a small region in the neighborhood of a solution.

THE SOLUTION OF RIGHT TRIANGLES

6-3. The Problem of Right-triangle Solution.—In computers for use
with airborne radar equipment, it is often necessary to find the hypote-

! Unpublished work, deseribed at MIT Physics Colloquium, Jan. 31, 1946, Sez
Vol. 19, Sec. 19-5, and Sec. 3-17 of this volume.
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nuse of a right triangle when the lengths of the legs are given. This is
because the range information provided by the radar is ‘“slant range’’;
that is, distance along a straight line from the aircraft to the object
giving the echo. It is more convenient in a computer, however, to use
ground range (distance from a point on the ground beneath the aircraft
to the object), for ground-range rates are much more nearly constant
than slant-range rates. This is a very desirable feature if rates are to
be found by tracking (Vol. 20, Chap. 7, of the Series). The procedure
in computer design, therefore, is to do whatever rate computation is
necessary in terms of ground range and then to find the hypotenuse of
the altitude triangle as the last step before comparing computed range
with observed radar range. In this section the term ‘‘triangle solution”
will denote the process of finding the hypotenuse of a right triangle, but
not of finding angles or of solving non-right triangles. The following
symbols will be used:

r = ground range,
h = altitude,
s = slant range.

The problem of finding the hypotenuse of a right triangle is not,
of course, confined to the altitude triangle in radar computers. Since
the triangle solvers to be described were designed for radar problems,
however, it will be seen that some of them have features which particularly
fit them for use with radar. One such feature is the representation of
quantities by the time delay of pulses from a periodic reference pulse;
time-delay representation or time modulation (Vol. 19, Chap. 13 of the
Series) finds more use in triangle solvers than in other types of computers
because the triangle solver often directly precedes the time-modulation
circuit. Another feature desirable in a triangle solver is that it inci-
dentally provide an h-delay output, for the aircraft’s altitude may be,
determined by comparing a variable-delay marker on the radar display
with the first ground return on the radar, which is delayed from the
transmitted pulse by an amount measuring h. If this method is used,
some of the errors of the ground-range determination tend to be canceled
out, particularly the zero error due to delays in the radar. It is tacitly
assumed that the altitude above sea level of the object giving the echo
is the same as that of the ground beneath the plane; if it is not, inherent
errors result.

One class of triangle solvers which will be discussed may be called
‘‘algebraic’’ devices. These include those which solve the equation
r* + h? = s? by squaring, adding, and extracting the square root. They
also include a device that uses the relation (s — 7)(s + r) = h%. Another
class of triangle solvers which will be mentioned briefly consists of those
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devices which make use of special nonlinear elements constructed by
curve-fitting methods (Sec. 5-2). A third class of devices that may be
used for triangle solution includes those which transform rectangular to
polar coordinates (Sec. 6-9). Finding the hypotenuse of a right triangle is
simply a special case of this transformation in which the angle output is
not used. '

Two triangle solvers will be discussed in detail. One, a parabolic-
waveform computer developed in England, is of particular interest for
its application of shaped waveforms to computation, as well as for its
sconomical combination of component circuits. The other, a phase-
shift triangle solver using a feedback integrator and differentiator, is
economical in use of parts and contains interesting provisions for can-
celing out certain errors.

6-4. Algebraic Methods of Right-triangle Solution. Block Diagram
of Squaring Method.—A general diagram of the squaring-type triangle

solver is shown in Fig. 6-5. The

quantities r and k are squared and

5| Souarer added, and the result is applied
to a device that extracts square
roots. Depending on the sort of
individual blocks available, the
Adder 32| Square | 8 extraction of the square root may
1o oot be done either directly or by the
use of a squaring device with feed-

r?

2
k back. Ifsquaringdevicesemploy-
ing repeated parabolic waveforms!
—»— Squarer are used, either a square or a
h . .
square root is obtainable, depend-

Fia. 6-5.—*]310c:‘(z (:l;a}igzru;naz(.)f computer for ing on whether the input is a

delay and the output a voltage or
vice versa. The voltage waveform generated by two integrations of a
constant is proportional to the square of the time interval from a refer-
ence time; thus, if the voltage output at a given delay is measured, the
device produces a square, whereas if the delay at a given voltage is
measured, it produces a square root. In this case, over-all feedback is
unnecessary. A possible instrumentation of the block diagram uses a
parabolic waveform for squaring, with the r- and h-inputs represented
by delays (Fig. 6-:6); the two output voltages are added, and their sum
is compared with the same parabolic sweep, coincidence occurring at a
delay proportional to s. In order that the sweep be unchanged in shape
by the amplitude comparisons, cathode followers are used for the com-
parisons. An appropriate change of scale factor must be made in the

1 8ee. 5-11; Vol. 19 of this serics.
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parabola compared with 72 4 &% for the adding network divides by a
factor of 2. Series addition may also be used, in which case two separate
parabolic waveforms are generated. A solution using parabolic wave-
forms in a somewhat different way is given in detail below (Sec. 6-5).

7 (delay) 2 (voltage)
»2
Cathode Cathode
Voltage r follower 7] €™ ™1 follower
. Parabolic Cathode Cathode
t Trigger -»=— g:rv‘veerear:m ™ follower Clamp follower
»?
h dtla 5
- h“Voltage
Cathode Comparison
Time follower device r2+h2(voltage)
s=‘\/,r2+h2
(delay)

I'16. 6-6.-—Hypothetical parabolic-sweep triangle solver,

If the squaring elements used were ganged linear potentiometers
(Sec. 5-11), a servomechanism would be required to extract the square
root. The squaring blocks would each consist of a pair of ganged poten-
tiometers, and the voltage outputs would be proportional to the input
shaft rotations. The two voltages would be added, and the sum applied

Ro= Resistance of pot Error signal due to unbalance
pot. shaft rotation \y
r=— Servo
Full rotation amp
R=R, (-:— -z2)
R .
| : |
1 1
:4———-2- -—-br(-:c e -z--I->|'
o AAAMMAAAAAAMAATAAAAAAAL
Ry
(a) Squaring element () Bridge circuit and servo for

equating
Fig. 6-7.—Triangle solver using resistance squaring and bridge.

to a differential servoamplifier which turned a third pair of ganged poten-
tiometers until their output voltage was the same as this sum. The
servo shaft rotation would then measure the length of the hypotenuse.

Method Using Resistance Representation and Bridge for Equating.—It
was shown in Sec. 5-11 (and in Sec. 3-5) that a resistance varying para-
bolically with shaft rotation could be obtained by connecting the ends of
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alinear potentiometer. This squaring device is shown in Fig. 67 together
with a triangle solver using three such elements. A Wheatstone bridge is
used for equating the resistances of the two arms containing the squaring
devices. If the bridge is unbalanced, the error signal changes the
resistance representing s? in the direction necessary for balance. Either
alternating or direct current may be used.

A bridge is an interesting example of a device that solves a relatively
complicated implicit function in order to get a simple result. In this
case the bridge is solving the equation y = z, where y and r represent
the resistances in the two upper arms of the bridge. It does this not
by producing the function f(x,y) = y — x, the simplest implicit func-
tion that may be written in this case; it produces the function

E(y - 2)

2(y + z)’
where E is the supply voltage, as may be shown by reducing the bridge
equations to this special case.

This device requires that component tolerances be held rather closely.
The potentiometers representing 2 and h? not only must be linear but
must have the same resistance per unit angle to the desired “degree of
accuracy if the input shafts are to have the same scale of » or A per unit
angle. The scale of s per unit angle may be made the same by adjust-
ment of one of the resistors B;. The input and output dials must be
zeroed when the potentiometer arms are in the centers of the respective
potentiometers. The resistor marked ‘“t+R;”’ must also be adjusted so
that when r, h, and s are zero, the bridge is balanced. If all the calibra-
tion adjustments are made well enough not to contribute appreciably
to the error, the remaining errors will be due chiefly to the matching of
resistance per unit angle of the r and h potentiometers and to departures
from linearity of all three potentiometers. With 0.3 per cent potentiom-
eter linearity, it should be possible to compute s with errors not exceed-
ing a peak value of 1 per cent of the range of output.

Method Using Electronic Multiplication.—The pulse-length computer
developed at Cornell University! is applicable to triangle solution. This
device solves the equation ab = ed by producing an attenuation a/c
and applying it to b to obtain d. In the case of triangle solution the
equation r? 4 h? = g% is used in the form

h(sfr)—(s+r)=e

with the error signal e amplified and fed back as s, aceording to the general
method of Fig. 6-1. A block diagram of the circuit is shown in Fig.
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6:8. The input r and the output s (derived from an amplified error
signal) are fed to the blocks “ —"’ and “ 4, which produce s — r and
s + r respectively. The quantity s — 7 is fed to a multiplying device
“X,” and the output is made equal to h by an inner feedback loop.
The multiplying factor k is thus equal to A/(s — 7). In the lower multi-
plying device, & is multiplied by this same factor, producing h2/(s — r).
This quantity is then compared with s 4+ r by the differential amplifier,®
and the difference is amplified and fed back as s.

A more detailed circuit diagram is shown in Fig. 6-9. If this figure is
compared with Fig. 6-8, it will be seen that the ‘“‘adder and subtracter’

circuit of Fig. 6-9 corresponds to the blocks marked “+” and “ — " in
'—‘——_:—E,L*"T x| k(s-r) Attenuation L
- k=t adjuster
-7 T
T
s+r =7 Differential |3 +7
—>—E_ X amplifier

Fia. 6-8.—Block diagram of pulse-length triangle solver.

Fig. 6-8; that the two attenuators correspond to the blocks marked
““X77; that the delay multivibrator, gate amplifier, and right-hand
differential amplifier comprise the ‘“‘attenuation adjuster’’; and that the
left-hand differential amplifier fills the block ‘‘diff. amp.”” The rather
complicated attenuator circuit used is necessitated by the fact that the
voltage s — r is best taken differentially. This same circuit is used for
the lower attenuator, even though the input A is available as a voltage
with respect to ground, in order to make the effect of the variable-length
gate the same in both attenuators, to balance out the effect of tube drift,
and to make level-setting easier. In a number of places the input to a
grid is taken from a potentiometer one end of which goes to B4 and the
other to the input variable. This has the purpose of setting d-c levels,
but each such control also affects scale factors.

It is expected that a circuit of this type will solve the equation with
errors of the order of 0.5 per cent of output range. The values of resistors
are fairly critical, both in bleeders and in plate and cathode circuits
where symmetry is desired. In some of the bleeders operating between
+450 volts and ground, constancy of output to 0.01 per cent is necessary;
this requires good resistors with matched temperature coefficients.

1 This technique of computation is treated in detail in Sec. 3-12. Circuits for addi-
tion and subtraction such as are used in this computation are also treated in Sec. 3-2.
2 For a more detailed trestment of differential amplifiers see Sec. 3.9,
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6-6. Curve-fitting Methods for Triangle Solution.—Nonlinear devices
constructed by curve fitting! may be used for triangle solution. It has
been shown in Vol. 19 that a hyperbola may be approximated by an
RC-network. This function may be used for triangle solution (Fig.
6-10); for if a waveform is generated whose voltage is proportional
will produce a coincidence pip at a delay?
t=~/h+ 12 =5 An auxiliary h-delay

generator is needed in order to start the hy- P
perbolic waveform at ¢t = h. This may be | ____ _ e
used to provide at the same time a marker on & pavi
the radar display, so that h may be found by ié" e {

2 I

comparison. The accuracy obtainable when R

three ganged potentiometers are used in the b s t—
network is about 0.05-mile peak error for I 6‘10-*%‘;&“"*’0“" wave-
0 < i < 5 miles and 1 < s < 20 miles. '

A device constructed by curve fitting may also be used when a shaft
is available whose rotation measures ground range and a voltage propor-
tional to slant range is desired. The operation may be performed with a
nonlinear potentiometer if the shaft measures 7/h or tan 6 (Fig. 6-11).

h  Adjustment

r
Lk
= l

Function ! |
A 5 k sec 8 Potentiometer 5 I
1
,J 1
h } ]
t
Resistance |
htan @ )

¥1a. 6-11.—Hyperbolic potentiometer.

The function produced by the potentiometer may be +/1 + z2, where
z is shaft rotation; if the applied voltage is &, the output voltage is

h+1+tan’g = hsecd = s.
! See Sec. 52 for the construction of nonlinear devices by curve fitting.

2 “A delay s’ actually means a delay equal to the time required for a radar pulse
to travel a distance s and return, that is, 2s/c.
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The procedure in using it will then be as follows. The output voltage is
connected to a delay circuit producing a range mark on the scope. A
switch is provided so that the voltage & may be connected directly to
the delay circuit; the proper altitude may be set in by adjusting % until
the range mark coincides with the first echoes from the ground beneath
the aircraft. This same value of & is then used in subsequent operations,
and the output of the potentiometer is

hsec 8 = s.

A potentiometer for producing this function is discussed in Vol. 20,
Sec. 52, of this series.

6-6. A Parabolic-waveform Method.—In a method described by
F. C. Williams,! parabolic waveforms (Vol. 19, Chap. 8) are used for
triangle solution by means of the equation

h 3
/ktdt——/ ktdt = 0,
0 r

which is equivalent to A? 4 r? — s2 = 0. The circuit generates two
sawtooth waveforms of equal and opposite slopes. The positive one is
integrated from { = 0 to a delay equal to h. The integral of the negative
sawtooth waveform, starting at time r, is added algebraically to the first
integral; and when this total waveform crosses its original level, an ampli-
tude comparison device produces a pip whose delay measures s. The
accuracy of this computation is about +0.25 per cent of maximum
range.

A circuit diagram is shown in Fig. 6-12. The detailed operation of
the circuit? may be described with the aid of Fig. 6-13. A positive pulse
is applied to the tube V, at the terminal A. The front edge of this pulse
draws grid current, and the rear edge, which is taken as the zero of time,
cuts the tube off for approximately 120 usec, producing a positive pulse
at the plate of V, (Fig. 6-13b).

Generation of Sawtooth Waveforms.—In its quiescent state, the plate
of V,is at about 240 volts because of the d-c¢ feedback from the plate
through Rs, R, and D; to the control grid. During this period D, is
cut off, its plate being at —5 volts because of R;. When the plate of
V1 rises, the plate of D, is raised, causing the cathode of D, to rise and
stopping the d-c feedback to the grid of V.. The current in Ry, is
switched out of D; and flows into C;, and the plate of V. runs down at the

1 F, C. Williams, T. Kilburn, and A. W. Marsh, “A Circuit for the Solution of the
Ground Range/Slant Range/Height Triangle in Airborne Radar,” TRE Report No.
T1844, Apr. 22, 1945,

t The following description is taken from a memorandum of F. C. Williams, with
slight changes.
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rate 200/R1Cs = 2 volts/usec. The inductance L, in the plate circuit
increases the gain and therefore reduces the distortion of the sawtooth.
This rundown continues until the knee of the tube characteristic is
reached, that is, until the plate is at about 30 volts above ground. The

t=Q0 (=7
o (e
{a) Repetition
puise Sev
4
(8) Apode of 65v
v X
| .
{c) V; Plate ™S
Integrator grid
D¢ restored level=1L volts
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A
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N +4v
r Gate i
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() D Flate \\/_
+4v
(k) R Gate
~5v| |
V, Plate ~ ||
(i) Cathode
Dypintegrator
+80v N

j) Plate of

(7) %
+80v
+50v

(k) Point “B" _]L l
)
L.

() Sec?n’lgary
e i ¥ 20v

h&s pips

P,

Fig. 6:13.-—Timing diagram for parabolic~
sweep triangle solver.

duration of the sawtooth wave-
form is therefore (240 — 30)/2
wsec = 105 psec. The plate re-
mains in this condition until the
plate of V, falls again, at which
time the d-¢ feedback restores it
to its original level of 240 volts.
The sawtooth is d-c restored! to
ground by the diode D4, C4, and
Ris At time ¢ = 0 the sawtooth
voltage should be equal to the
integrator grid voltage, that is,
— 1% volts, so that the current into
the integrator V¢ will start from
zero. Hence at ¢ = 0, a down-
ward step of 13 volts is produced
at the plate of Vs by applying a
positive step to the grid of Vyfrom
the plate of V' via the small con-
denser C2. The amplitude of the
step produced is C30/Cs times the
amplitude of the waveform at
the plate of V, (see Fig. 6-13¢).
In its steady state the para-
phase? tube has its grid at ground
level because of Ry;, and the space
current (and therefore plate cur-
rent) is limited by the sereen volt-
age, which is determined by Eis,
so that the plate potential is just
above the knee of the character-
istic. The rundown sawtooth is
applied to the grid through Cs; and
if €7+ Cz = C,, the plate wave-
form of V3 is in paraphase with

the platé waveform of V.. Condenser C; is variable so that this condi-

' If a waveform js constrained to start from ground level, it is said to be “d-c

restored’’ t¢ ground.

2 Two waveforms are said to be in paraphase if their sum is a constant.
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tion may be satisfied. The run-up sawtooth waveform produced is d-c¢
restored to ground by Cs, D3, and Rj,, and therefore in the absence of Cs,
the sawtooth wave would have a positive step of 1 volts at ¢ = 0. But
since C21 = 2C4, this positive step of 1} volts becomes a negative step
of 1} volts, and again the sawtooth wave starts from the potential of
the integrator grid (Fig. 6-13d). The inductance L, allows this negative
motion but does not impair the d-c restoration.

Aclion of the r- and h-switches—The plate waveform of V; is d-¢
restored to ground by Cs, Rs, and one of the diodes of V; and applied te
the suppressor grid of Vi. Before the time ¢ = 0, the suppressor of
V4is cut off, and the screen of V, is taking all the space current (about
8 ma). The tube is taking grid current through Ri;, and the plate of
Ds is negative with respect to its cathode by an amount determined by
the setting of P,. When the plate of V', rises the suppressor grid of V4
rises, and 6 ma of plate current flow in ¥, producing a negative edge of
9 volts (6 X Rq;) at the plate of V4. This takes the plate of D;, which
was previously at -+4 volts, below the level of the integrator control
grid, thus opening the r-switch, that is, rendering Ds operative (see
Vol. 19, Chap. 3, for switch operation). Current can now flow through
Ry and D from the run-down sawtooth waveform, and integration
commences. The r-switch is closed when the run-down sawtooth at the
cathode of Ds reaches the plate potential of Ds; the control grid of V,
begins to fall, and regenerative feedback through the transformer 7,
turns off the control grid almost instantaneously.! The positive edge
produced at the plate raises the plate of D; and therefore the cathode of
Dy and closes the r-switch. Thus V; and V. define accurately the time
interval 0 to r and allow the integrator Vs to integrate the run-down
sawtooth during this period only (see Fig. 6:13b, ¢, and f). The use
of ¥ with the run-down sawtooth changes the representation of r from
voltage (at P;) to time delay.

The h-gate tube V5 operates similarly, producing the waveform shown
in Fig. 6-13k in its plate. Before the zero of time the cathode of D'
is at <44 volts and Dy, is operative. At ¢ = 0, the cathode of Dy falls
to —5 volts cutting off current in Dy and closing the h-switch. At
t = h, the cathode of Dy rises to +4 volts, opening the h-switch, and
current flows through R;; and Dy, from the run-up sawtooth voltage.
Thus the time ¢{ = h, after which the integrator Vis allowed to integrate
the run-up sawtooth voltage, is accurately defined by Vs.

Action of Inlegrator: Production of Parabolic Waveforms.—As the
h-switch is closed and the r-integration begins, the plate of the integrator
tube Vs starts from about 50 volts because of the d-¢ feedback through

! This amplitude-comparison circuit is known as the “multiar” and is discussed in
Vol. 19, Sec. 9-14,
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Rss, Ras, Rso, and Du. The integrator has two equal leaks, the r-leak
Ras and the h-leak R, and two feedback condensers, Ci7 and Ca. At
the end of the integrator waveform it is essential to produce a sharp
edge from which may be derived a slant-range pip; this is the purpose of
the diode Di;, the resistance Rjs, and the additional condenser Co..
The main integrator waveform produced by Ci; appears at the cathode
of Dys, but the plate of V¢ must rise from 50 to 80 volts before any wave-
form can appear there. The plate is raised to 80 volts by a secondary
integration due to Css, which is much smaller than Cy;.  This integration,
which is very swift, takes place before and after the main integration,
and the final edge cuts off the grid of V; via Cis and Dy;, producing the
slant-range edge s. The waveforms at the cathode of D12 and the plate
of Vg are shown in Fig. 6-13: and 7. (For very small values of r the
entire integration is performed by Ci.) When the r-switch is opened,
negative current flows from the run-down sawtooth through Rg; and Ds
into Cy2, so that the plate of V, rises parabolically but very swiftly.
Hence the cathode of Dy; is raised, and the d-c feedback removed. When
the plate reaches 80 volts, the larger condenser Cy; takes over and a
waveform begins to appear at the cathode of Dy,. The cathode of Dy
rises parabolically until the r-switch is closed or until the h-switch is
opened. In either case integration stops because the resultant current
at the control grid is zero. For if b > r, both switches are closed during
the time from r to h; if h < r, the currents in E;; and R34 are equal and
opposite during the time from h to r, since the slopes of the run-down
and run-up sawtooth wave are made equal® by the preset condenser C..
At this point the current flowing through the resistance Rjs to charge
C,; is stopped, and the plate of Vi falls slightly. After this time both
the cathode of D;; and the plate of Vs are stationary until the A-switch
opens or the r-switch closes. A small step then appears at the plate of
Vs due to the reverse charging current in Ry and is followed by a parabolic
fall, since the run-up sawtooth voltage is now operating on the integrator.
When the cathode of Di» reaches 80 volts, it is held by current through
Dy, and the integration is rapidly completed by Ca. The inductance
L. in the plate of V¢ keeps errors in integration small by reducing the
required motion of the control grid.

Production of Markers—The times h and s are now present in the
circuit as edges at the cathode of V5 and the plate of V¢ respectively.
It remains to produce from these edges pips to act as brightness markers
on a CRT. The tubes V; and V3 perform this function. The grid of
V; is normally held at a potential slightly lower than the potential of
the integrator grid by Dz and R;;. When integration commences, the

! Actually the zero integration may be made a eriterion of calibration: thus the
setting of Cr will also take into account inequalities of K3y and Ry
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cathode of D3 is quickly raised by the plate of V¢ via Cig, and V; takes
grid current through R4;. At the same instant the plate current of V,,
which is flowing through Ry, is cut off. As a result the point B between
R; and 12, rises to a steady level which is maintained until the time ¢ = h.
At this instant, a negative pip, 5 volts in amplitude and about } usec in
width, is produced in the cathode of V; and applied to the grid of V;
via Dy.. The shape of this pip is maintained in spite of the strays from
grid to ground by the comparatively heavy current through the small
leak R4, and a positive pip appears in the plate of V; and at point B.
At the end of the integrator waveform the grid of V; is again cut off,
via Cys and D,;, producing a positive step in the plate of V; and at B.
The sharpness of this edge is enhanced by L;. The point B returns to
its original level when the grid of V, is turned on again; the resultant
waveform is shown in Fig. 6-13k.

This waveform is d-c restored to ground by Cis, R4, and the grid of
Vs and produces the required positive h- and s-pips across a low imped-
ance in the secondary of T; (Fig. 6-13]). This d-c restoration ensures
that the s-pip occurs at the instant when the integrator tube returns to
its initial condition. Transformer T isa differentiating transformer with
a 3/1 step-down ratio. The width of these pips is approximately 4 usec,
and their amplitude 20 volts.

6-7. Phase-shift Triangle Solution.—The addition of two alternating
voltages that are 90° out of phase may be con-
sidered a vector representation of the right

€, 1
G,
triangle in which the magnitude of the sum of B
the voltages measures the hypotenuse and the €
c.’J* R,
= ‘

phase difference measures one of the acute
angles. If the two voltages representing r and
h are originally in the same phase, it is neces- =
sary to shift the phase of one (usually the ©'% 6445;?:;:3{“ for 90
h-voltage) by 90°. .
RC-networks—The simplest method of doing this approximately is to
use a single RC- or CIR-network; this, however, has the disadvantage
that the phase shift is not quite 90°, and the voltage amplitude is attenu-
ated considerably if the shift is to be nearly 90°. A better method is to
use a bridge composed of two such networks, one introducing a phase
lead and the other a lag (Fig. 6:14). The ratio of output to input for
this combined network is

1
e2 . JwCi R, 1 + w2RR5C,C,

€1

1
R1+m Re +

1T T = @RRCACy + je(RiCy + RCY
jwC,
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and the phase shift is 90° if
2 - l .
° RleCng

a
w- = w,

The expression may be rewritten

1+<i>‘
e _ A\

€1 o\’ ) , .
1 — <w—0) +]w(R1C1 + RzCz)

(1)

The sensitivity of phase shift to changes in w is given by

(@), -7
de) ~— 1 . 1 °
R T Rl

In the case RiC, = R.C,, the output amplitude is equal to the input
amplitude, regardless of frequency. This method of phase shifting has
the disadvantage of high output impedance; furthermore, in order to get
the output voltage with respect to ground,
a transformer or similar device must be
R. used.
Phase Shifting by Feedback.—A method
of phase shifting that affords lower output
impedance and greater freedom of design
A2 @ uses a feedback integrator and differen-
! g tiator.! The same type of circuit that is
used in the parabolic-sweep triangle solver
= (Sec. 6:6) for integrating linear sawtooth
Fi6. 6:15.—S8ingle-stage feedback  waveforms may be used here for integrating
integrator. sine waves. A general feedback circuit of
this type is shown in Fig. 6:15. The equations of operation may be
written for a sine-wave input.
Let e¢; = input voltage,
ez = output voltage,
e, = grid voltage,
1 = current flowing from grid to plate through Z.,,
i, = current in R,,
Z, = impedance between input and grid,
Z, = impedance between output and grid,
and assume 7, = gme, for a pentode. The derivation can be extended to
triodes by letting R, represent the parallel combination of the load

]

' This method is due to W. G. Proctor. For a detailed treatment of the feedback
integrator and differentiator see Secs. 4.1 and 4-7; also Vol. 19, Chap. 18,
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resistance and the plate resistance. It is also assumed that no grid
current flows. By straightforward circuit analysis it may be shown that
the solution for over-all gain is

é(l _ ;>
€2 Z, ng2

e 1 1 Z @
2
1 + gmzl + ngL (1 + 71)

For an integrator, where

this becomes

.. wE S
e 1 1 j wRC
"Rt ;m'ﬁ;(l B TRC)
if gukt>> 1, guR2i > 1, and g./wC > 1. The output amplitude is thus

inversely proportional to frequency. In most practical designs the
impedances of R and C are large

relative to that of R, in order that +250v
the input impedance may be high.
Subject to this approximation, the 33k 120k
angle by which the phase lag exceeds -
90° is Output
b = 1 radian
wRCyg.R, ’ L,

If wRC = 1 (unity over-all gain) and
the tube is a 6AK5 with ¢,R. = 100,
6 =0.6° If a triode (e.g., a 6C4)
had been used, 4 would have been
about 5°.

If the variation of the computing
frequency is sufficiently small, an integrator alone can be used as a phase
shifter. A possible circuit for use at 500 cps is shown in Fig. 6-16.

If the capacitance and resistance connected to the grid in the pre-
vious ecircuit were interchanged, the circuit would be a differentiator.
It would be necessary to insert a blocking condenser in series with the
resistance from grid to plate and grid-leak resistor to ground. If, as in
Fig. 6-16, the resistance were 1 megohm, a blocking condenser of 0.1 uf
would introduce a phase shift of 0.2° at 500 cps. An application of the
previous analysis together with Thévenin’s theorem shows that the

¥i1g. 6:16,—Integrator ecircuit.
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presence of a grid-leak resistor, even of the same order of impedance as
Z, and Z,, does not produce an appreciable additional phase shift; its
effect is of the order of the 1/¢.Z terms rather than the larger 1/g.R.
term.

The output of a differentiator circuit for sine-wave input is then a
sinusoid leading the input by 90°; the amplitude response is proportional
to frequency. The fact that the amplitude response of a differentiator
increases with increasing frequency whereas that of an integrator decreases
makes it possible to compensate for the effects of frequency variation by
combining the two circuits. The method of combination depends on
how the phase-shifted output is to be added to the r-voltage. One

method of adding the 7- and h-voltages
(ﬁl_‘ d-¢  is to use parallel addition with a re-
Phase-shifted

-voltage 3 , thi
s output) sistance network (Chap. 3); thisresults

32{:::: in attenuation as well as addition.
Another method, which produces the
sum without attenuation, is shown in

(a) 7-voltage Fig. 6:17a. The two voltages to be
added are applied to the two terminals

— of a diode; the system assumes an

equilibrium state in which conduction
occurs at the peaks of (e; — e2). A
similar arrangement is possible with a
voltage-doubler rectifier, the difference
(e1 — e2) being applied twice per cycle
(Fig. 6-17b). In either case the two

() ,1;2 phase-shifted voltages from the differ-

Fio. 617.—Methods of combining entiator and the integrator are added
two voltages differing by 90° in phase.  geparately to the r-voltage and recti-
(a) Peak rectifier; (b) double rectifier. fied. If the resulting d-c voltages are
then combined by parallel adding, the desired frequency compensation of
the output amplitude results. The two alternating s-voltages cannot be
added before rectification, for in that case the hA-components would cancel
one another.

Triangle Solver with Transformer Output.—A third method of com-
bining the r- and h-voltages uses a transformer for addition (Fig. 6-18).
This method provides not only the frequency compensation mentioned
above but also better compensation for small constant phase differences
between the h- and r-voltages that may arise from the manner in which
they are obtained in the computer. The two outputs in the circuit of
Fig. 6-18 serve this purpose, as will be shown below. Since the tube
currents are equal and 180° out of phase, no cathode capacitor is necessary.

The calculations made above for the deviation of its phase shift
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from 90° and for the amplitude response as a function of frequency no
longer hold because the two circuits are no longer independent. The
compound circuit may be analyzed in a similar manner.

It will be assumed, as in the above analysis, that the grid-circuit
currents are negligible when compared to the tube currents, that the
source impedance is zero, and that the phase shifter works into an infinite
impedance. In practice, this condition can be more nearly satisfied
if a condenser is used for parallel-resonant tuning of the transformer.
The tubes will be assumed identical. Tt will be assumed further that the

h ha

S2
8

@I@ B'°°k'"8 ¢
—-e

P R,

— C,

ey e

e 1A
Grid leak

Integrator Differentiator

I'1u. 6-18.—Phase-shift triangle solver.

A-c source
C
€1=h R1

“ideal” to the extent that the two voltages across the

halves of the primary are equal and opposite.
Let e, = plate voltage of integrator,
plate voltage of differentiator,
e; = input voltage.
It will be assumed that each tube has a voltage gain G. If the plate
voltages are equal and opposite, the operation of the integrator can then
be expressed by the equation for the grid voltage,

transformer 1is

—eép

€1
jjc‘l + e,y
T 1‘ - A + ek!
I+ aCh
and that of the differentiator by the equation
— 6
61R2 ijz _ +€p
T = 0 + e
Ry +

ijz
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By subtraction ¢, may be eliminated; the result is
€p _ 1 + w2R1R20102

2
€1 —1 + 02R1R20102 - 2ij101 -_ g(fvgl—Gq—z‘Z—lé
where
. 1
Z1 = R1 + ‘my
and
1
Zy, = R2 + m

If the frequency of operation is given by wiRiR.C,C: = 1, and if G is
very large, the expression becomes

2
2 2 SR |7 A N
2
@ 1 - (i’-) + 2jWRxcl
Wy

This resembles very closely Kq. (1) obtained for the RC phase shifter.
At

&)

1
RBiR.C:CY

the phase shift is 90°. The difference between this expression and the
previous one reflects the fact that the output of the RC-network cannot
exceed the input whereas the output of the feedback system can. There
is a reversal of sign because a feedback integrator inverts the polarity
as well as integrates. The variation of phase shift with frequency is

given by
(3—?;)”0 = Ielc].

In the case wefiC: = 1 and G = =, the output amplitude is equal to
the input amplitude regardless of frequency; in this case Eq. (3) for the
feedback phase shifter has the same form as Eq. (1) for the RC bridge
phase shifter. The output impedance of the circuit is roughly equal to
the output impedance without feedback divided by the gain of a stage.

If an integrator and differentiator are used without transformer con-
nection in the plate circuit, a considerable decrease in the variation of ¢
with w may be obtained. This result may be derived with the aid of
Eq. (2).

The phase-shifted h-voltage is added! to the r-voltage at the trans-
former secondary as shown in Fig. 6:18. The two solutions for s are

w? = w} =

! This method is due to J. Lentz.
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related as the vector diagram of Fig. 6-18 shows. If the two secondary
voltages h, and ke are equal in amplitude and 180° out of phase, the sum
of sy and s: after they have been converted to direct current represents
very nearly the correct solution of the triangle even if the A's are not
exactly 90° out of phase with s. This is because the first-order differ-
ences of s; and s; from the true valie of s are equal and opposite; the
higher-order terms may be found by application of the law of cosines.
Thus if the h-input is not in phase with s, or if there is phase shift from
primary to secondary of the trans-
former, the effect will he largely
compensated. Thecompensation
is better when transformer output
is used than when the outputs of =—
the differentiator and integrator
are added separately to r; in the 0.001 3
case of separate addition, fre-

. . 1.56M ==
quency variation may cause h 23
and h; to differ in amplitude, thus
making first-order errors from L
phase shift possible. The trans- 6AKS5 BAKS 300t
former circuit, on the other hand, 220
provides both frequency compen-
sation and the balanced output |
necessary for phase compensation, Fic. 6-19.—Integrator-differentiator
provided o well-designed trans-  pshing srout. (Coteay” o7 Bl
former is used. ' ’

Figure 6-19 shows a phase-shifting circuit using a differentiator and
integrator and designed to operate at a frequency of 500 cps. The
additional network used in connection with the differentiator serves a
double purpose: It provides a d-c¢ return for the grid and at the same time
permits compensation for the phase-shift error due to the blocking con-
denser in the feedback circuit. As regards feedback of the plate voltage
to the grid, the capacitances 0.1 and 0.0015 uf and the resistances 4.7 k,
1 M, and 0.428 M constitute effectively a Wien bridge. The grid is
nearly at ground a-c¢ potential, so that the 1- and 0.428-M resistors are
effectively in parallel. If the bridge is balanced, the voltage at the upper
end of the 0.428-M resistor is in phase with the plate voltage; this is the
desired condition of operation.

Sources of Error—In a circuit of the type shown, errors may arse
from the following sources:

8y r 82

0.1 47k 00015

"

+150v 04285 {IM
— M

1. A change in the amplitude of the source appears as a proportional
change in the amplitude of each variable. To eliminate this error,
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it is necessary to compensate for these changes; one method of
doing this is to use the source as a standard when changing the
representation of s.

. Frequency change in the voltage source changes both the amplitude

and the phase of the voltage A, as shown above.

. Harmonic content in the voltage source is probably the most serious

cause of error in practical applications of a phase-shift triangle
solver. It is not difficult, however, to obtain a source having
about 0.1 per cent total harmonic content.! The error due to
harmonic content does not lend itself to simple analysis, but
experience has shown that triangle solutions have percentage
errors that are of the same order of magnitude as the percentage
of total harmonic content.

. Potentiometer nonlinearity obviously causes changes in amplitude

of the variables; the resulting error is of the same order of magni-
tude as the nonlinearity of the potentiometers used.

In the derivations above it is assumed that the impedance of
the input voltage source was negligible
compared with that of the input resis-
tor (or capacitor). The potentiom-
r eter impedance affects the output as
FAAA— though it were in series with the input
Tophase i pedance; it is therefore necessary

shifter o
{__‘C that this impedance be small. One
—

=C

way of reducing the peak error to
Fra. 6:20.—Method of re- about two-thirds its magnitude is to
ducing loading effect on *-  sonnect an impedance, equal to the
potentiometer. . . R
input impedance of the triangle solver,
between the potentiometer output and the top of the potentiome-
ter, as shown in Fig. 6-20 (see also Sec. 5-4).

. The phase-shift error introduced by imperfect phase-shift operation

is roughly proportional to the square of the phase error in radians
if the compensation described above is done accurately.

. Change of tube gain may affect the terms invoving g, in the

expressions for phase-shift and amplitude error. The effect of
gain changes is small, however, as long as the gain remains large.

. Harmonics introduced by the phase shifter are usually negligible if

the tubes are operated as Class A amplifiers.

. D-c drift in the rectifiers is a ‘““constant’ error, that is, it is inde-

pendent of the voltages being detected. A change in d-c level up
to 0.1 volt may be expected in common tubes with aging and with
10 per cent filament voltage changes. This error may be reduced

! Chap. 16.
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by regular calibration, by the use of a stabilized filament source,
or by the selection of a voltage scale such that 0.1 volt represents
only a small range. The scale factor is usually determined by
letting the maximum voltage available correspond to the desired
range of operation.

9. Unbalance in the transformer secondary or in the adding circuit
may produce first-order errors due to phase shift. If the two
voltages 71 and 7, are added in such a way that r; contributes
more to the sum than does r;, there results a first-order error
proportional to the departure from 90° phase shift and to the
fractional unbalance. Such a fractional unbalance may result
from an asymmetrical center tap of the transformer secondary
or from inequality of resistors in the network used to add the d-c
voltages. Another sort of error results if the voltages across the
two halves of the transformer secondary are not quite in phase
with each other; to reduce this it is necessary to wind the trans-
former symmetrically or to use resistive mixing instead of a trans-
former to add r and A.

To summarize, the integrator-differentiator triangle solver has the
advantage as compared with an RC bridge network of low output imped-
ance, the ratio of input to output impedance being of the order of the
gain of a stage. It has the advantage over pulse methods and servo
methods of requiring very few parts, including only two pentodes or
triodes. A fuller comparison of the methods is difficult unless the
desired representations of input and output are stated; for radar appli-
cations a rectifier and a time-modulation circuit must be used to con-
vert the output of a phase-shift triangle solver to a delay in order to
produce a range marker.

TWO-DIMENSIONAL VECTORS AND TRANSFORMATIONS

When navigation is to be done over relatively short distances, of the
order of magnitude of 200 miles, the earth’s surface may be considered
nearly plane; consequently to a first approximation displacements may
be expressed as two-dimensional vectors. Two-dimensional vectors in a
plane may be represented by physical quantities resembling vectors, by
rectangular components, or by pairs of nonrectangular coordinates that
bear some relation to the form in which the navigational data are obtained.
Examples of the last sort are polar coordinates, a common form of radar
information, and bipolar or two-range coordinates, which make use of
distances from two radars of known location. Information obtained in
either of these forms may often be used more conveniently if transformed
into rectangular coordinates; circuits for performing these transformations
and others will be discussed.
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6-8. The Mathematical Expression of Transformations.—A cor-
respondence may be established between the points of one plane and
the points of another by means of two equations,

z = fluuw),
y = glup),

where the coordinates in one plane are u,» and in the other are z,y.
These equations define a transformation of a region of the u,» plane into
a corresponding region of the z,y plane. Pairs of relations of this sort
enter also into the redescription of a point in a plane in terms of a new
set, of coordinates, when it has already been described in one set.

v Pq{
4
y\ ) y=-usin 9+v cos 6
oy
\ o] \>
\ X\ /\/
\ uoofoe / v COS 6
\ V L0
\,/ 2
\ / % sin 9—/4\\
< { /,\,s\“ y
s N
- - \

Fi1a, 6-21.—Rotation of rectangular coordinates.

A special transformation that is of interest is the linear transforma-
tion, which in two dimensions is expressed by means of two simultaneous
linear equations,

T = au + by,
y = cu + dv.

I

This corresponds in general to the transformation from one set of oblique
coordinates to another. An example of a transformation involving
oblique coordinates is given below in connection with the Loran plotting
board.

A further specialization may be made to the sort of linear transforma-
tion that corresponds to the rotation of rectangular coordinates without
change of scale factor. A transformation of this sort may be expressed
by the equations
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i

£ = ucos 8 -+ »sin 6,
y = —usin § 4+ v cos 8,

(4)

where 6 is the angle through which the axes are rotated. The correspond-
ing geometry is shown in Fig. 6-21, relating the coordinates x,y of the
point P to the u,v coordinates of the point.

Most of the devices to be described operate in only two dimensions.
A general three-dimensional rotation can be accomplished by the use of
three two-dimensional rotations of this sort.

6-9. Rotation of Rectangular Coordinates.—To perform the coordi-
nate rotation deseribed by Eqs. (4), devices producing sines and cosines!
must be used. These may each produce either a single sine function
(nonlinear potentiometers) or both sine and cosine together (resolvers,
square-card sine potentiometers, phase-shifting condensers). A block

w

] u Cos 8
>l =

: v oS 6, Adder z
re= cos 8 ‘l—,—l
1
;——— sin 6 B
~U Sin
! Adder "
L G
Z=ucosf+vsing
v Yy=-—usinB+vcos e

Fic. 6-22.—Rotation of rectangular coordinates.

diagram showing how single sine elements may be connected to rotate
coordinates is given in Fig. 6-:22. The products u cos 8 and v sin ¢ are
formed and added to give z; similarly, —u sin 8 is added to » cos § to
givey. The accuracy of such a transformation is limited by the accuracy
of the components used.

If a resolver is used to rotate rectangular coordinates,® either it may
be considered to be solving the equations of transformation bv producing
sines and cosines and adding them, or it may be considered a phyvsical
model of the transformation in which the inputs are the projections of the
magnetic field on the stator axes and the outputs its projections on the
rotor axes. A schematic diagram of the rotation of coordinates by a
resolver is shown in Fig. 6-23. If square-card sine potentiometers are
to be used, two are necessary, for each produces one sine and one cosine
function.

When a-c amplitude and phase represent a vector, coordinate rotation
corresponds simply to changing the phase angle. A phase shift varving

' For a detailed treatment of sine-cosine devices, see Sees. 5-6 and 5-9.

2 See also Miller and Weisz, ““Coordinate Transformation Circuits Using Resolv-
ers,” NDRC Report No. 14-228, June 1, 1944,
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linearly with shaft rotation may be obtained by the use of a phase-
shifting condenser or a resolver. If the input signal is put on one input
terminal and the same signal phase-shifted through 90° on the other
) input terminal, the rotor will pick up

y YsTusinfrvcoss a signal having amplitude propor-
c=ucos6+vsing tional to the input and phase shift °
varying linearly with the angular posi-
tion of therotor. Three-phase devices
may also be used. The accuracy ob-
tainable in this operation with phase-
shifting condensers is about 1°; with

u resolvers 0.1° (see Vol. 20, Chaps. 12
S - and 13). .
} 6-10. Polar to Rectangular Trans-
6 formations.—Transformation from po- |

F16. 6:23.—Rotation of coordinates by a lar to

rectangular coordinates is
resolver.

simply the production of a sine and
a cosine. It may therefore be done as a special case of coordinate rota-
tion, by any of the methods mentioned in Sec. 6-9. If the radial-coordi-
nate input is considered a vector that lies along one of the rectangular
axes and is to be rotated through an angle ¢
{the other polar coordinate), the operation
performed is the production of a sine and a
cosine. A block diagram of this special case &
and a diagram showing the use of a resolver :
to convert polar to rectangular coordinates 1
are shown in Fig. 6-24a and b respectively. L-‘r cos 6
The input to the resolver in this case is to the @)
rotor and the outputs from the stators, but
the reverse arrangement might equally well
be used. In practice it is more common to r
let the rotor be the input because there area 6»—— 18—
number of ‘“1-to-2-phase’’ devices that have

T

- sin 6 rsing

rsing

7 C0s 0
only one rotor winding but two stator
windings. =
6-11. Rectangular to Polar Transforma- (b

tions.—The conversion of rectangular to polar ~ ¥6. 6-24.—Polar-to-rectangular
. . transformations.

coordinates involves somewhat more com-

plication. The equations of transformation, written in explicit form, are

VETP,

g = tan—‘y-
e 4

r
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The operations of squaring, extraction of the square root, division, and
production of the inverse tangent are not simple. Implicit solutions are
more convenient in this ease. The equations of transformation may be
expressed in implicit form as

T
y

r cos 6,
rsin 8,

il

or again as
—zsin 8 + ycos § =0,
xcos @+ ysing =r,

In the latter pair of equations, the first equation is an implicit one for 8
in terms of z and y; the second is an explicit expression for 7 in terms of
z,y, and 8, which can be computed
in a straightforward way once the
first has been solved. A block dia-
gram showing how this trans-
formation can be performed with
single-sine elements is shown in Fig.
6-25a. The funection (—x sin 8+ y
cos 8) is computed by two of the
sine or cosine blocks, and this func-
tion is fed to a servoamplifier that
drives the §-shaft until the func-
tion reaches zero. When this loop
reaches equilibrium, the proper
shaft rotation 6 will be fed into the
other sine-cosine blocks, producing
r explicitly. ‘ r

The implicit solution of the
6-equation is similar to the tvpe

discussed in Sec. 6-2 and shown in ¥
Fig. 6-1; in both cases a combina-
4

tion of operations generates a func-
tion that is desired to be zero, and
this function is fed back in such a

way as to reduce its value. There D O
is an essential difference between g =

ervo amp =
the two methods, however. 1In the ()
circuit of Fig. 6:1 the function was ;
. . F1G. 6-25.—Rectanguiar-to-polar transfor-
fed back as one of the input vari- mations.

ables, whereas in this case, roughly
speaking, it is fed back as a rate of change of one of the input
variables 8. Thus the system of Fig. 6-1 has an inherent error resulting
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from the fact that at equilibrium the function f(z,y) has a small residual
value measured by /4 ; on the other hand, svstems of the type used here,
in which the feedback determines the rale of change of a variable, will
have no such inherent position error at equilibrium, for the error signal
is f(x,y) = (dy/dl)/ A, and this is zero because at equilibrium dy/dt = 0.

Resolvers.—Figure 6:25b shows how this transformation may be per-
formed with a resolver.! Tt will be seen that the operation is the same
if it is considered that one rotor winding picks up a voltage

—usin 8+ ycos

and the other & cos 8 + y sin 8. The servoamplifier has the same func-
tion as before, and » may again be considered to be found explicitly.
Perhaps a ‘simpler physical explanation of what happens is that the
servoamplifier causes one rotor to be oriented perpendicular to the mag-
netic field that is the resultant of the two fields produced by the stators;
the other rotor winding, parallel to the field, picks up the resultant
voltage. With the Arma resolver (No. 213044) or Bendix resolver
(XD-759542) such a transformation can be done with a peak error of
about +0.1° in an angle and +0.06 per cent of maximum output in
output a-¢ amplitude.

Sine Potentiometers.— The transformation from rectangular to polar
coordinates can also be made with a pair of ganged square-card sine
potentiometers. A method of this sort may be used with d-¢ voltage
representation. A diagram of this method is shown in Fig. 6-:26. Each
sine potentiometer performs the operations corresponding to two of the
sine or cosine blocks in Fig. 6-25. The principal problem in the design
of such a system results from the fact that d-c voltages representing the
various quantities involved do not have ground potential as a reference
level unless a push-pull supply is available for the sine potentiometer
(see Chap. 5). Also, in order to use the sine potentiometers with greatest
accuracy, the outputs should be taken push-pull rather than single-
ended. One possible approach is to produce balanced positive and nega-
tive voltages at the inputs, thereby centering the outputs at ground.
This, however, necessitates two voltage-inverting circuits, each of which
may require six triode sections (Chap. 3), whereas the method shown
requires only one inverting circuit.

The circuit shown provides for cancellation of the voltages Az and
By which are added to the sine and cosine components because the voltage
supplies for the sine potentiometers are not symmetrical. The servo-
amplifier that orients the shafts of the potentiometers must solve the
equation

zsin 8§ — ycos @ = 0.

! A sample design of a resolver servomechanism of this type is given in Scc. 11-4.
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it does this by virtue of the fact that the ‘“constant’ terms Az and By
are fed equally to the two inputs of the differential amplifier. The
equation actually solved is

x

2

sin0+Ax+%cos€+By=gsin0+Ax—%cosﬁ+By;

but this is equivalent to
xsin § — ycos 6 = 0.

The terms Az and By are removed from the output voltage by a similar
cancellation. The same subtraction that makes possible the push-pull

(from low impedance sources) "

8 Output z
| ] [ = e——
== 5
e
L . .
Servo i =
motor e -
1 1
Differential 1z 4f - \ / +
input servo |2 .
ampilifier Az Square card sinepots
¥
R SR| SR SR, 7036 +By
FSin6+A
' 4 ! Lsino+By
3‘0059*‘31[ R R:;
BT :Az
z D-c voltage
inverter
R}(%cos&*%sinO-ArBy,
S GV

z +, VWA~
Fosf+4 R ;
Output

(Const.)(x cos 6 + y sin 6)=(Const)(r)

F16. 6:26.—Rectangular-to-polar transformation using direct voltage.

2R —12’- sing +By

operation of the output is also used to remove the ‘““constant’ voltages.
Addition before inversion makes it necessary to use only one d-c voltage-
inverting circuit.

There is a loading error that results from connecting the adding
resistors R directly to the sine potentiometers. If a sine potentiometer
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has 20-k resistance and the mixing resistors are of the order of 1 megohm,
the error from this source will be of the order of 0.3 per cent of maximum
output (see Sec. 5:7). An inconvenience of this circuit (and of all precise
adding circuits using resistance networks) is that the resistors require
calibration if maximum accuracy is to be obtained. This requires five
calibration potentiometers in series with resistors. Since the sine
potentiometers may have +0.25 per cent peak errors, the over-all peak
error of the computation may be as great as 1 per cent.

The Loaded-potentiometer Resolver—There is another method of
transforming rectangular to polar coordinates that requires no special
parts like resolvers or sine potentiometers but operates over only a
limited range of angle (4 50° for example) depending on the degree of
approximation desired. This is the ‘‘loaded-potentiometer resolver.”!

r=z+ytan$
ztan o=y i
|
! - -
ey B
xtan 9: amplifier

tan% ——1:
Motor
y[tan—g— rc(’);—
DT

(a) T ()

FiG. 6-27.—Loaded-potentiometer triangle solver.

This device makes use of the fact that a tangent function can be approxi-
mated by the use of a loaded potentiometer (Sec. 5-4). The equations
of transformation used in this case are

rtan 8 = y,

g
r =2z -+ ytan 5
This again is a case of an implicit solution for 6 followed by an explicit solu-
tion for r. These equations are equivalent to the equations x = r cos 8,
y = rsin 6; the equivalence is shown geometrically in Fig. 6-27a. By
laying off a distance z along the hypotenuse, the isosceles triangle ABD
is formed; if EC is constructed parallel to A B, the triangle CDE is similar
to ABD and therefore isosceles; and CE = CD. The angle EBC = 6/2;
therefore CD = CE = y tan 8/2 and r = z + y tan 6/2.
Since two equations of transformation involving no trigonometric
functions other than tangents are given and a means of approximating
the tangent function is available (Sec. 5-4), a block diagram of a device

1 G. D. Schott, “Loaded Potentiometer Triangle Solver,” RL Group Report No.
63, May 31, 1944. The method is due to J. W. Gray.
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for making the transformation may be drawn. This is shown in Fig.
6-27b. The function z tan @ is produced, and the difference = tan § — y
actuates a servoamplifier that turns a motor orienting the §-shaft; the
value of # computed there is then used to produce y tan 6/2; this is added
to z to giver. The error observed over a range of +50° is approximately
0.5 per cent in r and +0.2° in 4, due chiefly to potentiometer nonlinearity
and inaccuracy of calibration.

The transformation from rectangular to polar coordinates may also
be done if a phase-shift triangle solver (Sec. 6:7) is used to produce both
phase and amplitude outputs. The phase shift may be converted to
rotation as shown in Chap. 3.

6-12. Special Coordinate Transformations. Oblique Coordinates:
The Loran Plotting Board.—In the Loran navigational system (Vol. 4),
an aircraft may find its position by measuring the differences in time

T
I A
o, - L If -
— -~ —
Y 1
- | — /0
A =
- I
Iso-A lines Iso-B lines
(a) Intersecting hyperbolas (b) Expanded region

Fia. 6-28.—Loran geometry.

delays of synchronized pulses from two pairs of transmitter stations.
The time difference (i.e., the difference in range) corresponding to each
pair of stations locates the aircraft on one of a family of hyperbolas, of
which the two stations are the foci. The measurement of two such time
differences, one from each pair of stations, locates the aircraft at a point
that is the intersection of two such hvperbolas. In practice, the trans-
mitters may be separated by several hundred miles. In some cases it
is desirable for the navigator to know his position in some region whose
dimensions are small compared with the separation of the transmitters.
In this case the approximation may be made that the coordinates may be
transformed linearly in that region (Fig. 6-28).

It has been desired to plot automatically the coordinates of the plane
on a board, as determined by the Loran information. Subject to the
assumption of straight-line oblique zoordinates, there are at least two
ways in which such a plotting board may be built so that it can be adjusted
to provide for the many different angles of intersection which may be
encountered. One such method is to let the plotting point be moved
by two mechanical motions whose angles relative to one another are
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adjustable.! A diagram of such a device is shown in Fig. 6:29. In the
device shown, one of the coordinates of the board must be parallel to
each of the families of hyperbolas in the region constdered.

If it is desired that the two mechanical motions of the plotting point

N-S and E-W (rectangular coordinates), this can be done by means of

a transformation? between the Loran delay
/— Plotting surface information and the information at the
7 board. The Loran time delays may be
converted to proportional d-c voltages by

/Motaon of plotting the use of delay circuits set manually to

point along arm . produce the same delay as the Loran.
These d-c¢ voltages then measure incre-
mental distances in an approximate system
of linear oblique coordinates. The proce-
e s 4 .
Motion of arm along edge of board ~ dure is to transform the d-e¢ voltages to

Fie. 6-29.—Plotting board  express position in N-S and E-W coordinates
with two mechanical motions ) R c ..
at adjustable angle. measured from a predetermined origin in

the region considered.

The relation of the rectangular and the oblique coordinates is shown
in Fig. 6-30. The family of hyperbolas running most nearly east-west
will be called A-hyperbolas or iso-A lines, and the others iso-B lines.
The voltage corresponding to the A-delay is represented by E,, and E,
is the voltage corresponding to the B-delay. If E, varies alone, the
plotting point must move on an iso-B line, at an angle 8 from north.
Let a represent the distance of movement
along an 1s0-B line required for each volt of
E.. Thenif E,increases by AE, volts and 'ngg"e
B is constant, the northward movement of 4
the plotting point is Ay = @ cos 8 AE, and
the eastward movement is Az = @ sin 3 AE 4.
If E5 varies alone, the stylus moves in an
iso-4 line, at an angle o from east. Let b

Arm
Adjustable arigle

1
1

Iso-A line
EB

Az
represent distance per volt of Es along an  ric. 6:30.— Relation of rectangu-

iso-A line. Then Az = b cos a AEE, and lar to oblique coordinates.
= bsin a AEs. If both E4 and Es change, the increments of x and y
give the equations of transformation

Ay
A

]

acos BAE,L 4+ b sin a AE,
asin BAE4 + b cos a AEj.

Il

t This method wis used in a plotting board designed in Division 11 of the Radiation
Laboratory.
2 This method is duc to J. W. Gray.
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'The signs of the various terms depend also on the sign convention adopted
for the positive directions of A and B.

A schematic diagram of a computer for doing this is shown in Fig.
6-31, and photographs of a plotting board constructed for this purpase
in Fig. 6:32. The instrumentation is as follows. Voltages measuring
AA and AB are obtained by comparing the outputs of time-modulation
circuits with the Loran delays. A voltage varying linearly with AA
and AB is obtained by a resistive mixing network; the coefficients of
AA and AB are adjusted by using potentiometers as shown in the dia-
gram. Since for a given mission the values of a, b, a, and 8 are constant,
they may be set in advance. The final step of converting voltage to

*+ B-delay
Time- control E-W lead
modulation - - screw
circuit i
= ) *
{ Differentia Motar !
Comparison b npu' S_erO —-_— - —— - - iz
‘with Loran E-w amplifier + § e
B delay voltage __ N 4
| ‘N
Loran Mixing N
Information network N N-S lead
N screw
NS
Companison 4 S
with Loran N-S - . I
LA delay L voltage Ditferential [ Plotting
input servo Motor point
j + amplifier
glr‘nev- %
modulation o
lutati g
circuit ) A-delay
contro!

Fig. 6-:31.—Schematic diagram of Loran plotting board.

displacement of the plotting point is done by means of linear-card
potentiometers and servos operating lead screws. The E-W lead screw
and potentiometer are actually moved across the board by two N-S
lead screws, as shown in Fig. 6-32. The plotting point moves in each
coordinate until the voltage picked up by the potentiometer arm is
equal to the transformed voltage in that coordinate. The adjustment
of the potentiometers may be checked by observing whether or not the
plotting point moves properly when each time delay is varied. Switches
must also be provided to allow for different orientations of the hyperbolas.

Bipolar Coordinates: A Transformation Using Squaring Devices.—The
Loran plotting board, which has just been described, is an instance of
the use of radar range data for locating a point in two <imensions.
Another problem of similar nature arises when the ranges of an aircraft
from two fixed stations on the ground are known and it is desired to
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®)
F1a. 6:32.—Loran plotting board.

(a) Top view; (b) bottom view.
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express the position of the aircraft in rectangular coordinates. This
constitutes a sort of bipolar coordinate system, but not an orthogonal
system. A pair of rectangular axes convenient for computation has its
origin at one of the fixed stations and its y-axis passing through both
stations. In this case the equations of transformation are no longer
linear. They are
I, m?—n?

v=gt o

zt = m? — g2,

where z, y = the rectangular coordinates as described above,
I = distance between the two fixed points,
m = range from fixed point at origin,
n = range from other fixed point.
The geometry is shown in Fig. 6:33a. A computer for solving this prob-
lem was designed by H. 8. S8ack! and uses methods similar to those used

1 mé—n?
V=2t Ty !
z2=m2-y2=(m+y) (m-y)
] m+n
mo + ab-cd + ——.
m?-n? ¥
n O m—n 2
m+y .
Vm2-y2
m-y
(a) (b)
Fia. 6-33.—Bipolar to rectangular transformation. (a) Geometry; (b) block diagram of
computer.

in the electronic triangle solver of Scc. 6-3. A block diagram of this
device is shown in Fig. 6-330. TIn the computation of y the operation of
squaring is carried out by a device that solves the equation (Chap. 3)

m+n U

2T m—n
or

m? — n* = 2u.

(Here w is an intermediate variable in the computation of y.) The
quantity 1/2 is then added to u. This is done by the four blocks in the
upper part of the diagram. Similarly the lower three blocks compute z

VH. 8. Sack, “Report on Computers Involving Squares and Square Roots,”
Cornell University, Oct. 19, 1943.  This work was done under an OSRD contract.
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as a function of m and y, by solving the equation

mty_ =z
x m -y

A schematic circuit diagram fer this computer (from the report
referred to above) is shown in Fig. 6-34. Differential amplifiers with

l Attenuator
vt :
nm o m l 3 S Rectangular
1 s pulse —T4 Attenuation
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m{— — "__\n
m-n Attenuator
11
22 m+n
l.. 2
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Trigger ?
v
Rectangular
+ s + Attenuator pulse
2 3V 4 111 |
! A
— —_ yf— —\" Attenuation
_——— ———— —_—— P X . e/
adjuster
A
3
Qutput Attenuator
Y m-y v
Output
T
miy
2

I'is. 6:34.-—Computer for y = ((/2) + (m? — n?) /2l 22 = m* — y2

constant-current tubes in the cathode circuits are used for addition and
subtraction. Each of these requires two envelopes: a pentode and a
double triode. Each “attenuator’’ block is a differential amplifier which
is made inoperative for part of the repetition interval by a variable-
length rectangular pulse from the attenuation adjuster. The feedback
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loop formed by the attenuation adjuster and the upper sttenuator assumes
an equilibrium condition in which the output of the upper attenuator is
equal to the other input to the attenuation adjuster. The rectangular
pulse then causes the attenuator to multiply by a factor (m + n)/l, in
the case of the y-computation. The same pulse then determines the
attenuation of the lower attenuator block, the output of which will be
(m — n)(m + n)/L

The circuit as shown requires about 28 tube envelopes, not including
VR tubes or the trigger circuit. This number may be reduced if lower
precision is required or if different methods of attenuation and addition
are used. The error in y may be 0.25 per cent, that of £ probably
somewhat greater.




CHAPTER 7
EXAMPLES OF COMPUTER DESIGN

By D. MacRag, Jr., I. A. GreeNwoob, Jir.,, axnp W. Rorn!

7-1. Introduction.—DPreceding chapters have covered methods of
design, techniques, and devices for use in the creation of computers. It
is the object of this chapter to present two typical computers to illustrate
the application of this information. The computers that will be dis-
cussed are (1) part of an airborne navigation computer and (2) a radar
trainer computer solving the problem of synthesizing the position of an
aircraft in polar coordinates relative to a moving ship.

The first computation to be discussed is one that solves part of the
problem of aircraft navigation using radar. The computer of which it
is a part is a ground-position indicator? which integrates the airspeed of
an aircraft and the wind to provide a continuous indication of position;
it makes use of radar to obtain an accurate indication of the position of
the aircraft with respect to identifiable objects on the radar screen and
to find wind. The computation to be described has to do with the pro-
duction of markers on a radar screen, corresponding to two shaft rota-
tions that represent the rectangular coordinates of a point with respect
to the aircraft; this constitutes only a portion of the entire navigational
computer. The treatment will be detailed in order to show some of the
practical considerations that enter into a design. The discussion of this
computer will follow the general design procedure given in Sec. 21; at
each step in the design the material of Sec. 2-1 is summarized, followed
by a discussion of the corresponding steps in the development of the
navigational computer.

At the time of termination of Radiation Laboratory technical develop-
ment work, the design of this computer was not finished, though most of
the circuits in it were completed or nearly completed. It is expected that
the development of this computer will be carried on by organizations
other than the Radiation Laboratory.

1 Sections 7-1 to 7.7, inclusive, are by D. MacRae, Jr., and I. A. Greenwood, Jr.;
Secs. 7-8 to 7-11, inclusive, are by W. Roth and I. A. Greenwood, Jr.

2 B. Chance, ‘“The Interconnection of Dead Reckoning and Radar Data for Pre-
cision Navigation and Prediction,” Jour. Franklin Inct., 243, pp. 355-372; W. J.
Tull, N. W. MacLean, ‘“GPI—An Automatic Navigational Computer,”’ Jour. Frank-
ltn Inst., 242, pp. 373-398, November 1946.

172



SEc. 7-2] PRELIMINARY INFORMATION 173

The spherical-coordinate integrator, the second computer described,
was used extensively in radar training equipment. In the discussion of
this equipment, the emphasis is on the description of the device rather
than on the process of its design. In several instances different circuits
are used in the two computers to perform the same operations. This is
due mainly to different accuracy and weight requirements but also
partly to the fact that different personnel were involved in the two
designs.

NAVIGATIONAL COMPUTER

7-2. Preliminary Information. Procedure of Sec. 2-1.—It was stated
in Sec. 2-1 that the first step in the design of a computer is the determina-
tion of what is to be computed and the interpretation of functional needs
in terms of technical specifications and basic equations or empirical
relations. At this point the designer also makes tentative over-all
block diagrams, using his knowledge of computing elements. Judgment
and ingenuity are particularly required in this step. The characteristics
of the basic data, the factors that limit the designer’s choices, and the
operating conditions must be determined. Desired controls, displays,
and outputs must be specified, and acceptable alternatives listed. At
this stage in the design it is appropriate to start discussing with com-
ponent specialists the possibilities of getting some of the scarce com-
ponents that might be useful in the design.

The GPI Navigational Compuler.—A ground-position indicator (GPI),
designed at the Radiation Laboratory, makes use of radar information
both for locating the aircraft and for determining wind. Both these
operations use a group of circuits that transform the mechanical informa-
tion in the computer into markers whose intersection constitutes an
index of position on the radar display. These are the circuits which are
discussed here in detail.

The air speed is resolved into north-south and east-west components,
and these are added to the respective components of wind, giving the
two resultant components of the velocity of the aircraft relative to the
earth. These are integrated by means of electromechanical integrators
of the type described in Sec. 4'9. The outputs of the two integrators are
shaft rotations representing the position of the aircraft and turning at a
rate determined by the values of air speed and wind which are integrated.
The relation of these coordinates (aircraft position) to the other coordi-
nates involved is shown in Fig. 7-1. These shaft rotations can be sub-
tracted from another pair of adjustable shaft rotations that represent
the coordinates of a reference point identifiable on the radar display,
and the differences represent the coordinates of the reference point rela-
tive to the aircraft. These differences of coordinates may be used in
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locating the aircraft with respect to identifiable echoes on the radar
screen and in finding wind. Let the index be set to coincide with an
identifiable echo on the screen by first setting in the known coordinates
of the point and then bringing the index to coincidence by rotating the
shaft measuring aircraft position. When this is done, a fir is said to
have been taken. The readings of the aircraft position shafts will repre-
sent the actual location of the aircraft.

The same index can also be used for finding wind. Since the coordi-
nate differences from which the index is formed are changing with a

Reference—=;

Aircraft
position
Coordinate!
differences |
used to producel

marks on

radar scope
Coordinates 0P

of aircraft
position

Origin of
coordinates
Fic. 7-1.—Coordinates represented in

velocity corresponding to the vector
sum of air speed and wind, the index
will remain on an echo once it has been
set to coincidence with it provided all
velocities have been correctly entered.
The index and echo move across the
screen together as the aircraft flies past
the identified point. If there is an
error in the wind entered into the
integrator, the index will drift off the
echo. This information may be used
in a manual tracking mechanism (Vol.
20) to correct the wind value until
the index remains on the echo. It is
the tracking operation, rather than the
taking of fixes as such, that determines
the accuracy required in the circuits

navigational computer.

producing the index.

Alternatives for Producing an Inder.—1It is first necessary toconsider
the alternative methods for producing an index on a PPI radar display.
One method, used in a GPI produced by the British, is to have a fixed
marker at the center of the cathode-ray tube and to move the radar
picture in accordance with the input information until a desired echo
falls under the fixed index. This has the advantage that rectangular
coordinate input information can be used directly; it has the disadvantage
that the PPI must be made to give a satisfactorily uniform map of the
ground beneath the aircraft. Normally the map will not be uniform,
for range from the center of the PPI is ordinarily slant range rather than
ground range. This may be corrected by the use of “ground-range
sweeps’’ which compensate for the nonlinearity of the time delay vs.
ground-range function by introducing a nonlinear function of radial
displacement vs. delay depending on altitude. Even with this sortv of
sorrection, however, the method is still relatively inaccurate.

Another method that depends on the cathode-ray-tube display of a
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true map is the use of a mechanical index. Such an index might be
moved in rectangular or polar coordinates. This, in addition to involving
the errors of the cathode-ray tube, may involve parallax.

The method chosen in this case is to intensify the beam of the cathode-
ray tube in accordance with the GPI information in the same way that
the radar information intensifies the beam. Thus the characteristics
of the CRT enter in the same way for both radar and GPI information,

F1g. 7-2.—Radar plan-position indicator with range and azimuth markers.

and errors from this source tend to cancel. The procedure will then be
to define a time interval measured from the transmitted pulse, which
represents GPI slant range; at the end of this interval an intensifying
range mark will be produced. To indicate the azimuth of the point
given by the GPI coordinates, a radial trace on the PPI will be produced
by intensifying the beam for the duration of one or more radial sweeps at
the proper antenna angle, that is, when the antenna azimuth relative to
north is equal to the angular coordinate corresponding to the GPI
information. The index will thus be the intersection of a circle and a
radial line.

Circuits Producing the Index.—The computation then consists prin-
cipally of converting the rectangular coordinates given by the N-8 and
E-W shaft rotations to the polar coordinates of the radar display. There
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are several changes of representation associated with this; they are
necessitated mainly by the facts that the inputs are shaft rotations, the
outputs are to be markers, and the most convenient rectangular-to-
polar coordinate transformation uses a-c voltages.

It i1s necessary to take into account the altitude of the aircraft in
producing the range marker. The method used for production of a range
marker is intensification of the beam in the cathode-ray tube at a time
instant delayed from the transmitted pulse by an interval correspond-
ing to the range of the echo in question. The “delay” of the radar echo
is proportional to the ‘“‘slant range,” whereas the GPI shaft rotations
measure the components of ‘‘ground range.””t Thus in order to control
the slant-range time-modulation cireuit it is necessary to correct the
ground-range voltage by an amount depending on the altitude.

Equations.—There are only three operations other than the identity
operation to be performed in this computation. The first is the rec-
tangular-to-polar coordinate transformation, which may be expressed
thus:

r2

z? + ¢

tan-! (%’) M)

An equivalent set of equations which more closely represents the opera-
tion performed is

6

zcos&-——ysin0=0,} )

zsin 8+ ycos 8 = 7.

The second operation to be performed is the computation of the hypote-
nuse of a right triangle, given the legs.

4Rt = g @)

where r = ground range,
h = altitude,
s = slant range.
The third operation is the subtraction of shaft rotations necessary
to produce the azimuth mark. This mark is to occur when

Br = 84 + O, “)

where 0 = the angle of the resolver shaft (output of rectangular-to-
polar transformation),

the angle of the antenna with respect to the aircraft,

the compass angle (the angle of the aircraft with respect to
north).

! See Sec. 6-2 and Vol. 20, Chap. 4.
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Design Limitalions.-—In connection with this computer three basic
decisions were made:

1. An attempt is to be made to meet strictly the performance speci-
fications and, where applicable, the component specifications of
the Army Air Forces and the Navy Bureau of Aeronautics. These
specifications relate mainly to the life of the equipment and its
performance when exposed to extremes of temperature, humidity,
vibration, etc., and are briefly discussed in Chap. 19.

2. An attempt is to be made to employ radical new techniques of
electronic construction and the most advanced design techniques
available if necessary in order to reduce drastically the weight of
this computer.

3. Strong emphasis is to be placed on reliability and the various
factors that contribute to it, such as ease of maintenance.

The emphasis on light weight points to the necessity of replacing
some components with much lighter substitutes. In some cases com-
ponents must be redesigned. Several basic electronic devices of this
sort which are extremely important in the further development of this
computer are lightweight accurate resolvers; small lightweight servo
motors, controllable with small tubes; subminiature tubes; lightweight
small condensers; and small precision computer transformers. Labora-
tory development and discussions with manufacturers are initiated or
continued at this stage in the computer design, most of these devices
having been already under consideration for other purposes or as part
of a basic development program.

Errors—Throughout the design process, the designer must have an
idea at least of the order of magnitude of the errors to be expected in
computation. In the GPI navigational computer, it is necessary to
consider the desired over-all performance in the light of other navigational
techniques and of limiting component accuracies. From a consideration
of this sort, approximate figures for the permissible over-all error may
be specified and this error may be apportioned among the various com-
puting elements.

The discussion of the circuits to be treated here will assume that
such a general error analysis has been performed, and that the probable
error of a setting of the index, due to the circuits discussed, is not to
exceed } mile on a radar display having a 50-mile maximum range. An
assumption of this sort is quite arbitrary, and, in fact, it is often found
that the original apportionment of permissible errors has to be modified
as the design proceeds.

7-3. Creating a Block Diagram. Procedure of Sec. 2-1.—After the
problem has been defined, the general nature of the computer decided
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upon, and most of the design limitations stated, the next step is to create
a block diagram. This process requires ingenuity and some knowledge
of available techniques. It is difficult to say when the best arrangement
of components for a given problem has been reached; successive trials,
aided by experimental and theoretical information, will generally lead
to improvements over the first diagrams drawn. Several different
representations of quantities will usually be found in the optimum
arrangement.

Representation of Quantities.—The nature of the output determines part
of the instrumentation; for example, the use of a time-modulated range
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] —{ mark Radar
synchro synchro synchro circuit
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L \ L] Pip
I generator
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Oscillator | 14 gelay circuit and
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FiG. 7-3.—Generation of range and azimuth markers frotn integrator outputs.

mark makes it convenient to use a delay circuit (Sec. 6-6) actuated by a
d-c voltage. Some sort of transformation from rectangular to polar
coordinates is necessary, and at some point, either before or after the
transformation, the mechanical input information must be converted
to d-c voltage. The principal choice remaining has to do with whether
the transformation is to be done mechanically or electrically. In the
development of this computer consideration was given to both mechanical
and electromechanical methods. An electrical resolver, the electro-
mechanical device, was finally chosen for the operation after it was
shown to provide satisfactory accuracy, because it seemed easier to
obtain in quantity and because it was lighter than the mechanical device
considered. ‘

The block diagram then assumes the form shown in Fig. 7-3. The
z- and y-shaft rotations are first converted to alternating voltages by
means of linear potentiometers. The voltage across the potentiometer
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is supplied by a sine-wave oscillator (see below). Since the voltages at
the potentiometer arms come from relatively high-impedance sources,
precise impedance-changing circuits {drivers) are necessary to reproduce
these voltages across the resolver stator windings without loading the
potentiometers, The coordinate transformation is done by means of a
servo (Sec. 6-9) that turns the resolver rotor until one winding picks up
no voltage. At this equilibrium position, the other rotor winding picks
up the resultant a-c voltage that measures the ground range r, and the
rotor shaft rotation measures the angle 8z = tan™! (y/z).

The range voltage then goes to a triangle solver, which computes to
slant range s from r and the altitude. The phase-shift triangle solver,!
which uses alternating voltages, is particularly convenient here. At
this point a rectifier converts s to d-c representation, and the delay circuit
produces a proportional time delay. Finally a sharp intensity marker is
generated at the time corresponding to s, and this marker is fed to the
CRT.

" The angle 8z is taken off by an Autosyn,? and by means of differential
Autosyns the algebraic sum 8z — 8, — 84 is formed. The rotor output
voltage of the final Autosyn is zero whenever 6r — 8 — 84 = 0, and at
this time the azimuth mark appears. The azimuth mark circuit pro-
duces an intensifying pulse when the Autosyn output is a minimum.

An additional amplifier, not shown, is inserted at the output of the
resolver. The function of this amplifier is to multiply the r voltage by
a constant. This is done in order to permit the resolver drivers and the
oscillator supplying voltage to the potentiometers to operate at low
voltage level and thereby conserve power. In the entire computer
there are several other amplifiers similarly employed so that there is
considerable saving of power and consequent reduction of weight in the
power supply.

The use of the oscillator voltage as a reference for the linear delay
circuit may be done in such a way that, to a first approximation, varia-
tions in the oscillator output do not affect the delay of the range mark.
If the slope of the triangular waveform is made proportional to the oseil-
lator output, a given range (defined by input shaft rotations) will cor-
respond to a constant delay, regardless of small variations in oscillator
voltage.

T-4. Preliminary Design. Procedure of Sec. 21 —After the block
diagram has been drawn, the first stage of design is to select the circuit
types to be used. 'This means taking the design to the point where the
values of most of the components are known approximately; the com-

' (. Bee. 67.
2 See See. 121,
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ponents determining the accuracy must be known well enough to permit
a performance analysis, and it must be possible either to buy or to manu-
facture them. When the circuit types to be used are fairly standard, the
approximate accuracy obtainable may often be stated before any design
work is done for the particular problem at hand. If a new computing
circuit is required, however, considerable development work may be
required to make sure that the cireuit can satisfy the requirements.
Circuit Types—For each block in the block diagram of Fig. 73 a
specific circuit type must be chosen. The principal requirement on the
oscillator that supplies the computing voltages is that it produce a nearly
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0.02 l—_l__E)-OZ Output

amplitude
control
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Fig. 7-4.—Oscillator cireuit.

pure sine wave, with not more than about 0.1 per cent harmonic content.
A further requirement imposed by other circuits in the computer is
that the output be fairly constant. Thus the eircuit type chosen is a
Wien bridge oscillator with a thermistor for amplitude stabilization.
Positive and negative feedback are applied at the two terminals A and B
of the Wien bridge. The signal at the input grid is a measure of the
unbalance of the bridge. At the fundamental frequency the bridge is
balanced, but for harmonics there is considerable unbalance. The result
is a sharp frequency characteristic tending to reduce the harmonic
content of the output considerably. The feedback is taken from the
transformer secondary in order to minimize distortion introduced by
the transformer itself.

The drivers for the resolver stators are two-stage amplifiers with
high feedback gain, nccomplishing the same purpose as cathode followers
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but having less variation in gain with respect to tube change and aging.
Circuits of this type are discussed in Vol. 18, The peak variation with
respect to tube change is expected to be about +0.1 per cent.

The servo for the resolver uses an a-c amplifier, phase detector, and
final differential-current output stage driving the field windings of a split-

—»+250V
2120k $ 220k %20!(
] ) 2w
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Sz-zlectg&1 T Stator of
resolver
3220k %o.47 M 15k 150

All resistors Y2 watt unless indicated

Fi1G. 7-5—Resolver driver circuit.

field motor. This circuit may require further development work in order
to achieve the error figure of 748 = 100 yd peak error which was assigned
to it for this purpose.

Following the resolver is a step-up amplifier which changes the voltage
scale by a factor of about 5. This is a three-stage amplifier with a feed-
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Fic. 7-6.—Resolver servo cireuit,
back circuit that consists of a parallel-adding combination of two resistors
in the grid circuit. The over-all gain of the amplifier with feedback is
determined almost entirely by the values of these resistors. A trans-
former might be used for this purpose, but the output impedance would
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be greater, harmonic distortion might be introduced, and there would
probably be more variation of ratio with temperature.

The triangle solver is of the phase-shift variety discussed in Sec. 66,
using electronic differentiation and integration to produce a 90° phase
shift with amplitude reasonably constant over the frequency range used.
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F1Gg. 7-7.—Step-up driver circuit.

The rectifiers (one for each of the two output voltages of the triangle
solver) are of the voltage-doubler type, in order to increase the scale
of d-c¢ volts per mile at the delay circuit. Crystal rectifiers might be
used here to avoid tube drift and to reduce filament power.

After the d-c voltages have been combined in an averaging network,
the average is compared with a periodic triangular waveform by means
of an amplitude comparison circuit. The triangu-
lar waveform is generated by abootstrapintegrator
circuit of a type discussed in Vol. 20. Deviations
from linearity may be of the order of 0.1 per cent
o—] —<  and level shifts 0.2 per cent of maximum output.
Methods of producing range marks are also dis-
cussed in Vol. 20. A blocking oscillator is used to
produce the final sharp pulse.

The azimuth mark circust! is an amplifier that
produces a pulse when the output of the Autosyn
chain reaches zero. This output goes to zero
twice during every revolution of the antenna, so
that some means must be provided for selecting one of these “‘nulls’ and of
preventing a mark from being produced by the other, which occurs 180°
away from it. The principal sources of error in azimuth marking arise
from the Autosyns; there may be errors of approximately 0.2° in the rotor
position at which minimum output occurs; and the minimum output may

——

Fic. 7-8.—Voltage-doub-
ler rectifier.

! See Vol. 20, Chap. 4.
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differ from zero, so that it is necessary to provide in the amplifier for start-
ing the output pulse before the input reaches zero.

Components.—The potentiometers that convert shaft rotation to
voltage must have a linear variation of resistance with rotation. For this
purpose a 10-turn helical potentiometer® can be used. Deviations from
linearity are held to 0.1 per cent or less of total resistance. Another
possibility is the single-turn RL270 potentiometer (Vol. 17, Chap. 8),

which was under development at the time of design and is capable of
the same accuracy.
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Fig. 7-0.—Azimuth mark circuit.

A resolver that meets the design requirements is one developed by
Bendix Pioneer (XD-759542) for use in lightweight computers. This
device is accurate to 5 min in angle and +0.06 per cent of maximum
output range under the conditions in which it is used in this computer.
The ratio of input to output voltage varies with temperature, changing by
about 0.2 per cent over a range of —55° to +70°C. This variation may
be reduced by changing the electrical loading on the resolver output.

The precision resistors that determine the gain of the step-up driver
must “track” (preserve the constancy of resistance ratio) over the
desired temperature range. These may be wire-wound or other types
of precision resistors. The initial adjustment of ratio is made by a
factory-set calibration rheostat in series with one of the resistors; thus
even if an accuracy of computation of 0.1 per cent is desired, the initial

1 The “Helipot” made by National Technical Laboratories or the “ Micropot’’ of
Thomas B. Gibbs Co.; See Vol. 17, Chap. 8.




184 EXAMPLES OF COMPUTER DESIGN [SEC. 74

values of the resistors need not be held to. closer tolerances than 1 per
cent.

The constancy of the slope of the triangular waveform with respect
to temperature depends on the constancy of the RC product of the inte-
grating network (Vol. 19, Chap. 10). These components must be chosen
so that their temperature coeflicients cancel to some extent. The
accuracy to which this can be done is limited by the designer’s knowledge
of the temperature coefficients; if standard mica condensers such as those
specified in Specification JAN-C-6 (Apr. 20, 1944) are used, the variation
of temperature coefficient within one class in the specification is a limita-
tion. The best tolerance specified (type G) is from 0 to —50 ppm/°C.
When by proper choice of resistance type the average temperature
coefficient of RC is made zero, a change of +0.25 per cent over a 100°
range can still be expected from a randomly chosen sample. If elements
are separately tested and matched, greater accuracy is possible, but
quantity production becomes much more difficult.

These, then, are the principal precision components which contribute
directly to the error of computation. The tubes used also contribute.
Clamp tubes in the linear delay circuit, the diodes in the rectifier, and the
coincidence tube all introduce d-c level changes. The triode amplifiers in
the oscillator introduce harmonics that must be removed by the Wien
bridge feedback.

Other special components introduced in this design are the split-field
servo motor, used in the resolver servo; the oscillator output transformer,
specially designed for light weight and balanced output; and the ther-
mistor used to stabilize the oscillator output.

If production in quantity is contemplated, the possibility of obtaining
or manufacturing all these special components is investigated at an early
stage in the design.

Scale Factors.—The maximum range of the radar with which this
computer is to be used determines some of the scale factors. The range
attainable on ordinary ground echoes (cities, land-water boundaries,
etc.) is from 30 to 60 miles; however, in order to provide for the longer
ranges that may be obtained if radar beacons are used in navigation, it
is preferable to use a maximum range of 100 nautical miles. The poten-
tiometer that converts shaft rotation to voltage must then represent 100
nautical miles! in either direction; that is, its entire length corresponds to
200 miles. If single-turn potentiometers with a full rotation of 350° are
used, the mechanical input must be at a scale of 200 miles = 350°.
For the same reason, the range mark must go out to 100 miles, the delay
circuit must be accurate to at least that range, and the full voltage of

" In the discussion that follows, “miles” will be used to refer to nautical miles.
A nautical mile is equal to a minute of latitude.
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the triangular wave form must then correspond to 100 miles. This full
voltage is made as large as possible in order that tube drifts shall cor-
respond to small errors in delay.

The plate supply voltage for the amplifiers can be an unregulated
300-volt supply. This limits the possible output of the step-up amplifier
following the resolver, for the peak-to-peak swing of the plate of the output
tube cannot exceed 300 volts. As a matter of fact, the nature of the
circuit restricts the maximum output to about 200 volts peak-to-peak,
or 70 volts rms. Thus the a-c voltage scale at the triangle solver is
70 volts rms = 100 miles, or 0.7 volt rms per mile. The voltage scale for
circuits preceding the step-up driver is 0.2 (volt rms)/(mile), so that the
gain of the step-up driver is about 3.5. The output voltage of the oscil-
lator is then (200 miles)(0.2 volt/mile) = 40 volts rms. This appears
across the potentiometers. The maximum voltage in either coordinate
that goes to the resolver stator is 20 volts rms.

Since the differentiator and integrator in the triangle solver operate
better when the gain is less than unity, a larger altitude voltage than
the desired output is fed in. It is desired to provide for altitudes up to
40,000 ft (about 7 miles). If the entire oscillator voltage (20 volts) is
used to supply an altitude potentiometer whose full rotation represents
7 miles, a loss in gain of a factor of 14 can be taken in the phase shifter.

In the azimuth data a scale factor might conceivably be used if
“two-speed”” data from geared-up synchros were used. In this case
however, no such gearing is employed, so that in one sense the scale
factor for azimuth information may be considered to be unity. The
information is actually transmitted in the form of two voltages which
measure the projections of a rotating line segment on oblique axes at
120° to one another. One such voltage is used as the input to the azimuth
mark circuit. This voltage varies as the sine of output angle, hence in the
useful region, where the voltage is nearly zero, it is nearly proportional
to the angle itself. A scale of voltage/angle at null may then be defined;
if it is measured in volts per radian it is equal simply to the maximum
output of the autosyn chain. As the output signal is amplified, this
scale factor is multiplied by the gain of the amplifier.

One scale factor that enters into the design, although it does not
appear directly in the computation, is the sensitivity of the error signal
winding of the resolver. The voltage per radian of error, for small
error angles, is equal to the r-voltage that appears across the other rotor
winding, assuming that the two rotor windings have equal numbers of
turns.

7-6. Performance Analysis. . Procedure of Sec. 2-1.—The performance
analysis is a check on paper to determine in the light of available data
whether or not the computer will operate satisfactorily. This consists
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chiefly of an error analysis with consideration of the effects on errors of
the conditions under which the computer is to operate: temperature,
humidity, pressure, etc. The particular value of a systematic check of
this sort is that it may show that some important data have not yet
been taken; for example, the probable life or behavior with temperature
of some important component may not be known.

Errors.—In each case when a component error is known, its maximum
value is specified. Usually the error varies in such a complicated way
that it is extremely inconvenient to give a measure of error such as rms
or probable error. A linear potentiometer is a good example of this.
Yet when the errors of a number of components are combined it will be
extremely rare that the maximum errors of all the components appear
simultaneously and all affect the output in the same direction. If the
designer is more interested in the probable error of the computer than in
the limits of error, he must make some approximations and simplifying
assumptions in order to use the data available for the components. At a
later stage in the design (after a model has been made) probable errors
may be found by taking more data. At the present stage an estimate
must be arrived at without this information.

A set of working assumptions that have proved useful are the following:

1. The probable error of a component will be assumed equal to one-
third the peak error or tolerance (this corresponds to an error not
exceeded in 96 per cent of the cases in a normal probability
distribution).

2. Errors may be combined by squaring, adding, and extracting the
square root, as is customary for probable errors. The result of
calculations carried out on the basis of these assumptions may be
expected to be correet within something like a factor of 2. In
practice the most serious departures from the behavior predicted
in this way have been found to be due to systematic deviations
of the central value from the true value, due, for example, to
miscalibration.

The approximate values of maximum errors for the various compo-
nents and circuits mentioned, exclusive of temperature effects, may be
tabulated as shown in Table 7-1. These figures may be converted into
miles (or degrees in the case of the azimuth error, which may be calculated
separately), and the square root of the sum of the squares calculated.
If the resulting figure is then divided by 3 (this being the equivalent
of dividing each peak error by three), the result will be the assumed
probable error.
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The range error is then approximately

(Ar)prob =
V(0.2)? + (0.1)2 + (0.06)% + 4(0.1)* + (.01)? _
3

0.11  mile. (5)

Similarly, the azimuth error is approximately
4/(0.08)% +(0.06)2 + 4(0.2)?
3

If a fix is taken at an average range of 50 miles, the corresponding error
TAB 18

(A8)pro = = 0.14° (6)

(rAB)peee = 0.12 mile. (7)

If these range and azimuth errors are combined by rms addition, the
result is a probable fix error of 0.18 mile. This is somewhat better than
the figure of + mile mentioned earlier.

TaBLE 7-1.—MaxiMumM ERRORs

Component Maximum error A_r, a8,
miles | degrees
Potentiometers. .. .. .. +0.19% of full range (200 miles) 0.20 | ......
Drivers.......... . ....| £0.19% of output 0.10 { ......
Resolver. ........ ... .. +5min; +.06% of max. output (100 miles)| 0.06 | 0.08
Resolver servo. .|R A8 =100 yd at R = 50 miles (average | .... | 0.06
range) .
Autosyns.......... ..| £0.2° each, combining randomly ... 0.2+/3
Azimuth mark circuit. .| +£0.2° ... 10.20
Step-up driver.........| £0.1% of output 0.10
Triangle solver.. ... . .. +0.29, of altitude 0.01 | ......
Detectors.............| £0.2 volt (200 volts = 100 miles) 0.10 | ......
+0.2 volt (200 volts = 100 miles) 0.10 | ......
Delay circuit.......... { +0.19, of full range (100 miles) departure | 0.10 | ... ...
from linearity.

Other Considerations.—The performance analysis of this computer
with respect to temperature is not detailed here. Some important
sources of error may be mentioned however. The variation with tempera-
ture of the stator-to-rotor voltage ratio of the resolver (0.2 per cent) is
significant and is characteristic of transformers. Change of air gaps
with expansion of core metal and change of wire resistance with tempera-
ture are probably responsible for the effect. These variations may be
compensated once they are accurately known.

At this stage of the design it is also well to consider the interaction
of the various separate circuits. For example, the loading effect of the
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resolver drivers on the precision potentiometers may be checked. The
input impedance of the drivers is very high and chiefly eapacitive; but
until a rough quantitative check has been made, the designer cannot be
sure that significant phase shifts will not occur. The interaction of the
z and y channels may be examined in case current in a rotor winding
should produce coupling between the two stators. The operation of
the step-up driver and triangle solver with the detectors should be cheecked,
for the pulses of current drawn by the detectors may produce undesired
transients in the preceding circuits. These points require experimental
work with two circuits at a time and may expose difficulties before a
model has been constructed.

7-6. Detailed Design. Procedure of Sec. 2-1.—The design must now
be carried to the point where each component is well enough specified
so that it may be ordered and so that it can be counted on to function
properly in the computer. In the following description, circuit designs
will be given, but in many cases tolerances are not available.

The tubes shown in these designs are miniature tubes (the 6C4
triode, 6AK5 pentode, and 6AL5 double diode) and subminiature tubes
(the Sylvania SD-834 triode' and Raytheon CK-604 pentode). The
circuits using miniature tubes may be redesigned for other tube types
by means of relatively minor changes.

Oscillator —The 500-cps oscillator, a Wien bridge circuit, is based on
a design made at Bell Telephone Laboratories with the assistance of a
Radiation Laboratory engineer. The circuit is shown in Fig. 7-4. The
output is 40 volts rms across 10,000 ohms. Tests on the circuit indicated
only 0.05 per cent second harmonic and 0.1 per cent third harmonic in
the output waveform.

Resolver Drivers.—These drivers are two-stage amplifiers with cathode
feedback, as shown in Fig. 7-5. The design of these circuits is discussed
in detail in Vol. 19. With respect to variation in tubes, load impedance,
condensers, and resistors, the variation of gain does not exceed +0.1
per cent.

Resolver Servo.—For the servoamplifier to be used with the split-
field motor, an a-c amplifier, phase detector, ‘phase-iead’ network,
and a differential current output stage, as shown in Fig. 7-6, should prove
satisfactory but is untested. A similar circuit which was used in a
related equipment is described in Sec. 14.3.

Step-up Driver—The high feedback gain of this circuit and the use
of three stages of amplification necessitate careful design to prevent
oscillation. The design procedure for this amplifier is discussed in
detail in Vol. 18. The final design is shown in Fig. 7-7. The use of a

t Now the 6K4.
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step-up amplifier here allows lower voltages to be used in the preceding
stages, with resultant over-all savings in power and weight.

Triangle Solver.—A tentative circuit design, incorporating the reduc-
tion in gain previously mentioned, is discussed in Sec. 6:6. The sources
of error in this type of triangle solver are also discussed in that section.

Detectors.—The type of voltage doubler recommended is shown in
Fig. 7-8. The principal design problem with this type of detector is
usually selection of proper capacitor values; this should not be difficult
in the present case, because of the low output impedance of the step-up
driver.

Time-modulation Circuit.—A time-modulation, or ‘“‘delay,” circuit,
including sweep generator, coincidence ecircuit, and pip generator, is
similar to those for which detailed discussion and design procedures are
given in Vol. 20.

Azimuth Mark Circuit.—This cireuit is shown in Fig. 7-9. It includes
a differential amplifier, a plate-circuit detector, and a regenerative loop
which causes the output to be a rectangular gate several milliseconds in
length. Differential rather than single-ended amplification is used in
order to make it possible to use a shorter time constant in the detector.
This is necessary because the angular velocity of the antenna (200°/sec)
is such that one cycle of the 400-cps line supplying the autosyns corre-
sponds to £°.

The final autosyn is connected in such a way as to make available a
voltage that goes (approximately) to zero only once each revolution,
rather than twice. 'This is done by adding to the sine-modulated output
voltage a constant a-c voltage equal to the maximum output. The
resulting voltage is used to remove the “back trace” of the azimuth
mark.

7-7. Finishing the Design.—Several steps remain to be done in the
design of this computer. The detailed design has to be carried out for
several of the circuits. A model must be built as a check on the combina-
tion of circuits and mechanical components., One difficulty often encoun-
tered when circuits and mechanical parts are to be designed under
pressure of time is that the mechanical design has to be “frozen’’ much
sooner than the electrical design. This means that last-minute changes
can be made in the electrical design if experiments show that some
expectations are not realized; the corresponding mechanical changes,
however, may be much more difficult to make.

It is in the remainder of the design that the limitations already men-
tioned—light weight, reliability, conformity to aircraft specifications—
enter particularly. Care must be taken in chassis layout to save weight
and space but at the same time to make servicing possible and to avoid
excessive heat dissipation at ‘“hot spots’ in the chassis. Exhaustive
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tests must be made to see whether or not the circuits perform satisfactorily
with respect to temperature, vibration, humidity, etc. Even such things
as the effect of chassis warm-up should be considered, for it has been
found in some instances that a circuit calibrated a short time after it
has been turned on may show substantial systematic errors after an
hour or two of operation.

SPHERICAL COORDINATE INTEGRATION

7-8. Statement of Problem and Preliminary Design Information.-—
The spherical coordinate integrator discussed in the following sections
was designed as part of a radar training device and solves the differential
equations of motion of an aircraft as observed from a moving ship.
Information such as heading, air speed, rate of climb, rate of turn of the
aireraft, direction and magnitude of the wind, and the course, speed, and
rate of turn of the ship are set into the integrator, which then operates
upon this information in such a manner as to yield the position of the
aircraft with respect to the ship, as measured in spherical coordinates.
Thus, slant range, azimuth angle measured in the horizontal plane, and
elevation angle of the aircraft above the horizontal plane are computed
as continuous functions of time. These data are used to simulate the
position information ordinarily obtained by a radar mounted aboard the
moving ship and tracking the maneuvering aireraft.!

Two fundamental methods of solving the differential equations of
motions may be investigated. One method involves resolution of the
various velocity vectors into three mutually perpendicular components
whose directions are fixed with respect to the earth, integration in these
coordinates, and transformation of the resulting position information
into the desired spherical coordinates. The second method consists of
transformation of the various velocity vectors into vectors in spherical
coordinates corresponding to the rate of change of range of the aircraft,
rate of change of azimuth, and rate of change of elevation, respectively,
followed by integration in these coordinates, no coordinate transforma-
tion of the resulting position information being necessary. After careful
consideration of both methods, the latter one was chosen. It is simpler
than the first method, since no final conversion from one set of coordi-
nates to another is used; because of this it is also capable of giving
smoother output information, since the output of a velocity servo is
usually smoother than that of a position servo running at a comparable
velocity and is certainly smoother than that of a velocity servo and a
position servo in series. This smoothness is desirable from the stand-
point of the radar trainer application.

1 A complete description of a trainer employing the spherical coordinate integrator
will be found in “SP Trainer,” Radiation Laboratory Report No. 928.
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Upon investigation, several assumptions are found that simplify the
general equations and are acceptable from the radar training standpoint,
since they introduce negligible errors. These simplifying assumptions
resulted in considerable savings in over-all system complexity. The
effects of wind and ocean currents on the ship may be assumed equal to

Fi1G. 7:10.——Radar trainer using spherical coordinate integrator.

zero. Curvature of the earth may be neglected. Skidding of the airer.ft
and the ship during turns may be neglected. Since a stabilized antenna
is used in the radar equipment that this trainer component was to simu-
late, roll and pitch of the ship may be neglected.

With these assumptions, the detailed differential equations of motion
of the aircraft with respect to the ship can now be developed.

The simplified system geometry is shown in Fig. 7-12. Complete
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ground plane geometry, including the effects of wind and motion of
the ship, is shown in Fig. 7-11.

The symbols used throughout the discussion have the following
meaning:

elevation angle of aircraft with respect to horizontal,
azimuth angle of aircraft with respect to north,
heading angle of aircraft with respect to north,
course of ship with respect to north,

direction of wind with respect to north,

rate of climb,

horizontal true air speed,

ship speed,

wind speed,

altitude of aircraft,

slant range,

ground range,

position of radar,

position of aircraft,

projection of aircraft position on ground plane,
= time.

Note that V, is a horizontal speed. When the aircraft is climbing,
the true air speed is the vector sum of V, and C.

Figure 7-12 indicates the position of the aircraft in space relative
to the ship at a given time ¢ as well as the velocities of the aircraft at
that instant. Since the solution is desired in spherical coordinates, the
input information pertaining to the motions of the aircraft, ship, and
wind must be resolved into vectors representing rates of change of range,
elevation angle, and azimuth angle.

By inspection of Fig. 7-12, the radial component of ground speed is

[ 1 [ (I

1 T (O T |

« TVUOXe wngQﬂqemm
I

i—?)va = Vacos (¢ — 0), 8

where the subscript V., indicates the component is due to horizontal
air speed. Similar components due to ship motion and wind are obtained
as shown in Fig. 7-11.

Since

R Z—g)m = V,sin (¢ — 6), (9

the rate of change of azimuth angle due to the (horizontal) air speed is
given by

‘f_‘?) = ILB Vo sin (¢ — 8). (10)
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Here again similar components are obtained as a result of the ship motion
and the presence of wind. The total rate of change of azimuth angle is

given by
de dé de de
= ) a

and upon integration, the actual azimuth angle of the aircraft is obtained.

In a similar manner the rates of change of range and elevation angle
are obtained. Substitution yields the desired differential equations of
motion:

%=%[Vasin(¢—0)+Wsin(r—0)'—S,sin(-y—o)]

—Z—:=1{Ccose—[Vacos(¢—0)+Wcos(-r—0)

vr . (12)
— S cos (y — 6)] sin €}

%‘;= {Csin e+ [Vacos (¢ — 8) + Weos (r — 8)

— S cos (y — 6)] cos €}

In order to obtain the actual displacements, these differential equa-
tions must be integrated with respect to time to give

6

I

00+/;:%B[Vasin(¢—0)+Wsin(r—0)
— Ssin (v — )] d!
e=eo+/;:%{Ccose—[V,cos(qS—O)+Wcos(r—0)
— S cos (v — 6)] sin €} dt
po+/:{Csine+[V¢cc>S(¢—0)+WcOS(T—0)

— S cos (y — 8)] cos ¢} dt

These are the general equations! which are to be solved by the inte-
grator. The quantities with the 0 subscript indicate the initial displace-
ments at the time ¢, when the input data are introduced.

7-9. Integrator System Operation.—A simplified block diagram of the
integrator is shown in Fig. 7°13. The manner in which the necessary
input data are entered and the way in which the integrator solves the
equations can be explained with the aid of the block diagram. A more
detailed description of the operation of the individual blocks is presented
in a later section.

The input knobs that are employed to enter the necessary rate data

(13)

©
I

! A detailed development of these equations of motion will be found in the previous
reference.
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are shown at the left of the figure, while the output dials representing
the spherical coordinates of the aireraft with respect to the ship are shown
to the right.

The input rates are converted from mechanical shaft displacements
to a-c¢ voltages whose magnitudes are proportional to the respective rate
shaft displacements. The conversion element in each case is a linear
potentiometer fed from a constant-voltage a-c source.

The rate-of-turn voltage derived from the rate-of-turn input knob
is used to control the speed of an a-c motor. Over the range used, the
speed of the motor is roughly linear with control voltage so that the output
shaft rotates the compass heading dial and shaft at a speed roughly pro-
portional to the desired rate of turn. The aircraft heading dial in meas-
uring the displacement integrates the rate of turn. This crude velocity
control can be used only because the required rate-of-turn accuracy is
not great.

The (horizontal) air speed knob is geared to the arm of a linear poten-
tiometer which is electrically connected to the rotor of the air speed
resolver. A resolver develops two output voltages proportional respec-
tively to the product of the sine and cosine of the rotor angle and the
rotor input voltage. The rotor is turned by a mechanical differential
which has the aircraft heading ¢ as one input and the azimuth angle 8
as the other. The differential is connected so that the output shaft
turns as (¢ — 8). If the voltage impressed on the rotor of the true air
speed resolver is proportional to V,, the output voltages are proportional
to Vs cos (¢ — 6) and Vasin (¢ — 8). These voltages are indicated
on Fig. 7-13 alongside the corresponding output winding of the resolver.
This resolver, therefore, has solved the ground speed triangle of Fig.
7-12.

The rate-of-climb input knob is geared to the arm of a linear poten-
tiometer which is electrically connected to the rotor of the rate of climb
resolver. The rotor is geared to the elevation angle shaft; and since
the rotor input voltage is proportional to C, the output voltages are pro-
portional to C sin e and C cos € respectively.

In a similar manner, the ship speed resolver takes the input voltage
S and the rotor angle (v — 6) to give output voltages proportional to
S cos (y — 6) and Ssin (y — 6). The wind speed resolver takes the
input voltage W and the rotor angle (r — 8) to give output voltages
proportional to W cos (r — 8) and W sin (r — 6).

By referring to Eq. (12), it is seen that we must take sums and differ-
ences of the vector quantities already obtained and further operate on the
resultants. This is done by connecting the resolver output windings in
series. Addition is performed by connecting the windings in like phase,
and subtraction is performed by connecting the windings in phase opposi-
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tion. The relative phases are shown in Fig. 7-13 by the plus and minus
signs at each terminal of the resolver output windings.

By following the series circuits starting with the wind speed resolver
output windings and paying proper regard to the phasing, we obtain a
voltage proportional to

) ar
Weos(tr—80) —Scos(y —8) + Vacos (¢ — 0) = I (14)
which feeds the rotor of the range rate resolver.
The second series circuit yields a voltage proportional to
de

Wsin (r — 6) — Ssin (y — 9) + Vosin (¢ — 0) = REZ (15)

which is employed to drive the azimuth angle velocity servo. Equation
(14) indicates that we have obtained an a-c voltage proportional to the
algebraic sum of all components entering into the rate of change of ground
range. Similarly Eq. (15) indicates that we have obtained an a-c voltage
proportional to the algebraic sum of all components entering into the
rate of change of azimuth angle. It still remains, however, to divide
Eq. (15) by R in order to obtain the actual rate of change of azimuth
angle df/dt.

As shown in Fig. 7-12, the quantity dR/df must be further resolved
tointroduce the elevation angle e. This is done by the range rate resolver
as shown in Fig. 7-13. The voltage obtained in Eq. (11) feeds the rotor
of the resolver, while the angle € is set into the resolver by the shaft.
Hence, we obtain voltages proportional to (dR/d{) cos e and (dR/d!) sin e,
respectively. The contributions to the motion of the aircraft resulting
from the rate of climb are entered by adding the respective components
from the rate-of-climb and range rate resolvers as shown in Fig. 7-13.
Thus, by following through the two series circuits in a manner similar to
that used previously, we have

dR . de
CCOSE—d—tSIHE—pa (16)
and
. dR _dp
Csme—i——ECOSe—E (a7

Equation (16) must be divided by p and integrated in order to give the
movement of elevation angle resulting from the input data. Similarly,
if Eq. (17) is integrated, the increment in range will have been obtained,
and the increment in azimuth can be obtained by dividing Eq. (15) by
E and integrating. The above quantities which are 10 he integrated
are all expressed by voltage amplitudes.
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Let us follow the integration of Eq. (15). It is desired to obtain

t=tq de
0~oo+/:=0 R[Ra]dt, (18)

where the quantity R (d8/d¢) is now available as a voltage e(f). We
therefore write

8 = 6, + ﬂ IE e(t) dt. (19)

= / e(t) dt

/t=ll
6=10 = du-
o+ t=0Ru

Let

and

The integration is actually broken into the same two mathematical
steps, as above. The voltage e(¢) is first integrated with respect to time
by a velocity servo integrator. The function 1/R is then integrated with
respect to the output of the velocity servo integrator, by means of a ball-
disk integrator. The ball-disk integrator used for this second integration
is a convenient device for integrating with respect to a variable other
than time, whereas the velocity servo is a convenient method of inte-
grating with respect to time. A more complete discussion of this dis-
tinction will be found in Chap. 4.

An alternate method of solving the integration problem would have
been to multiply the voltage e(f) by 1/R before integrating by the velocity
servo, the ball-disk integrator not being used. This alternative method
was not feasible here because a speed range of 10° {ratio of fastest speed
to slowest speed) was required. Neither a velocity servo nor a ball-disk
integrator is normally capable of such a wide speed range. However,
by cascading two devices, each with a speed range of 103, the over-all
speed range requirement could be met. In an exactly analogous fashion
¢ and p are obtained.

In connection with the integration of Egs. (15) and (16), the multi-
plying factors 1/R and 1/p, respectively, must be used to position the
balls of the ball-disk integrators described above. These functions are
entered by dividing servos, which receive as their input data voltages
proportional to B and p, respectively. The operation of these servos is
shown in Fig. 7:13. The feedback voltage closing the loop of each
servo and used to balance the input voltage is derived from the poten-
tiometer on the servo output shaft, connected as shown in Fig. 7-13.
A constant a-c voltage is applied to the arm of this potentiometer, and
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hence, by Ohm’s law, the current through the lower part of this potentiom-
eter and its associated small resistance is inversely proportional to the
sum of the small resistance and the included resistance of the poten-
tiometer. The voltage across this small resistor is then balanced against
the input voltage in each servo, leading to a null in one case at a resistance
proportional to 1/E and in the other case to 1/p. The mechanical pnotign

is used directly to adjust the ball position of the ball-disk inte!grat&"." 3

Since the elevation angle ¢ has been obtained and the range p 1~
known, the ground-range altitude triangle may be solved by means of

I'1e. 7-14.—Combination velocity servo and ball-disk integrator.

the ground-range resolver. If the rotor of this resolver is fed from the
arm of the p potentiometer and the e shaft is geared to the rotor, the
output voltages will be proportional to the ground range and altitude
respectively, since

R =pcose (20)
and

h = psin e (21)

Thus an a-¢ voltage whose amplitude is proportional to ground range R
is obtained and is used as the reference voltage to obtain the displacement
proportional to 1/R.

It is interesting to note that the ground range R could have been

obtained in a different way. It will be recalled that a voltage propor-

tional to dRR/dt was obtained in order to feed the rotor of the range rate

[URRNUURVE

ku",n O
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resolver. Since this quantity represents the rate of change of ground
range, upon integration there would be obtained the ground range R.
Although this method might seem more straightforward than the one
described above, it suffers from the fact that for the same over-all accuracy
greater accuracy is required of the individual elements than is the case

Fic. 7-15.—Radar trainer with front panels removed.

with the method actually used. With the present system if errors arise
in the integration of dR/dt and de/dt to give p and e respectively, the
ground range R will still be consistent with these output data, since
it is derived from them. This is a typical example in which the choice
of a block was made on the basis of the effects that it would produce
elsewhere in the system and involves the concept of error caucellation
discussed in Sec. 2-8.
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Since the ground-range resolver was introduced to obtain a voltage
proportional to ground range in accordance with Eq. (20), at the same
time there can be obtained a voltage whose amplitude is proportional
to the altitude of the aircraft. This is given by Eq. (21).

A linear potentiometer which is driven from a constant a-c¢ voltage
source serves as the data output element. The arm of this potentiometer
is geared to the servo motor as well as to the altitude-indicating dial and
is electrically connected to the input circuit of theservoamplifier. The
altitude voltage obtained from the ground-range resolver is also fed into
the input circuit of the servoamplifier. In the usual manner, the servo
motor will rotate the potentiometer arm in a direction such that the two
input voltages are equalized.

The terms po, 6, and e, which appear in the integrator equations,
are set in manually as initial displacements. These terms are integration
constants that fix the position of the aircraft with respect to the moving
ship at the start of a trainer problem.

The above analysis of the system operation by means of the simpli-
fied block diagram has shown how the range, elevation angle, azimuth,
and altitude of a moving aircraft with respect to a moving ship can be
obtained. The section that follows will present the actual detailed
circuits used and some of the design problems encountered.

7-10. Unit Operation.—This section will discuss specific circuit details
and Jesign problems encountered during the development of the
spherical coordinate integrator. The values of circuit elements actually
used are given in the figures so that the reader can obtain an idea
of how the theory presented in the previous section was reduced to
practice.

Figure 7-16 is a schematic diagram of the rate-of-turn channel. A
Diehl FPJi-25 two-phase induction motor is used as the turn rate motor.
The rate-of-turn potentiometer, which is fed from a center-tapped auto-
transformer, controls its speed. One winding of the motor receives
constant excitation from the 60-cps line, while the other winding receives
variable power from the rate-of-turn potentiometer and the autotrans-
former center tap. The capacitor placed in series with the fixed or
constantly excited field winding shifts the phase of the excitation to
provide the quadrature fields necessary for motor operation.

The voltage applied to the control field is a minimum when the arm of
the rate of turn potentiometer is at the center and is a maximum at
either end. Since the voltage is referred to the center tap of the auto-
transformer, the phase reverses as the potentiometer arm sweeps from
one end through the center to the other. In this manner, a voltage
reversible in phase and adjustable in amplitude is applied to the control
field of the motor. The direction of rotation of the motor iz dependent
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upon the phase of the control voltage, and its speed is roughly propor-
tional to the voltage amplitude in the range covered.

Since the motor requires a control voltage of the order of 15 volts to
start under the actual loading conditions, a shaft rotation of about
+40° from the center would ordinarily be required to start the motor.
By adjusting the resistance of the zero set potentiometer, the voltage at
the center of the rate-of-turn potentiometer can be made to equal the
value necessary to just start the motor. Hence, by modifying the stand-
ard commercial potentiometer, the rate-of-turn motor can be actuated
with about +1° rotation of the potentiometer arm. Although this
feature in no way alters the theory or manner of operation, it does provide
an improvement in the method of turn simulation.

Heading motor Aircraft
Dieh! FPE 25 heading
20
o it @
110v
60~ Oy)— — — <+ ——
!
!
|
L—— — ¢
Rate of turn To horizontal
potentiometer true air speed
1300 differential
500 D
Zero set
100 uTC
R-48

Fia. 7-16.—Rate-of-turn control.

The schematic circuit diagram for the resolver channel is given in
Fig. 7-17. The central power source is a center-tapped autotransformer
fed from the 60-cps line. The horizontal true air speed knob is geared
to the arm of the true air speed potentiometer. The potentiometers
P, and P, are included so that the maximum and minimum true air speeds
respectively can be preset. The rotor winding of the true air speed
resolver is fed from the secondary of a step-down transformer which in
turn is driven by the air speed potentiometer.

The step-down transformer is used so that the loading of the poten-
tiometer by the rotor of the resolver is reduced to a negligible value.
The load impedance presented to the potentiometer is essentally that
of the reflected rotor impedance, which is high enough to prevent exces-
sive loading. Since the load is inductive and the source impedance is
resistive, a phase shift occurs that cannot be tolerated for reasons that
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will be discussed later. This phase shift is a function of potentiometer
setting because the source resistance varies as the arm rotates. By
tuning the load circuit comprising the step-down transformer, resolver,
and secondary circuit of the resolver, a load that is higher and resistive
can be presented to the true air speed potentiometer. In this manner,
approximately zero phase shift can be maintained independent of poten-
tiometer setting. The 2.0-uf capacitor in parallel with thetransformer
primary is used for this tuning. It has been found that commercial
10 per cent tolerance capacitors maintain the over-all circuit phase shift
within the desired limits.

The rate-of-climb resolver is fed in a similar way, although the resistor
network required to feed the rate-of-climb potentiometer is quite different.
The rate-of-climb voltage must be able to reverse phase, one phase
indicating a climb and the other phase indicating a dive. In addition,
the maximum dive voltage must be greater than the maximum climb
voltage, since an aircraft may dive at much greater speeds than it climbs.
The four potentiometers can be adjusted to provide for the proper climb
and dive voltages as well as providing for a dual scale type of presenta-
tion. With the switch in Position 1, a regular scale is provided which is
used for most applications; however, Position 2 may be used to give
lower rates of climb or dive for the same potentiometer shaft rotation,
providing greater accuracy when setting in low rates of climb or dive.
The phase of the control voltage reverses when the arm is in the electrical
center of the potentiometer network in a manner similar to that discussed
above for the rate-of-turn potentiometer.

A step-down transformer plus tuning capacitor is again employed to
minimize loading of the rate-of-climb potentiometer and phase shifts,
as discussed above.

The ship and wind speed resolver circuits are made identical, since
the maximum magnitude of wind considered is in the order of the maxi-
mum ship speed. Potentiometers P; and Ps are included so adjustment
of the respective maximum speeds can be made if desired. The resolvers
are driven in the same manner as those discussed above so that poten-
tiometer loading and phase shifts are kept to a minimum. The fixed
resistors in series with P; and Pj respectively are included to attenuate
the voltage to the proper level for use in the two channels. The rela-
tive amplitudes of the voltages impressed on the rotors of the resolvers
must correspond to the relative amplitudes of the quantities that they
represent. These relations are set by the values of resistors and poten-
tiometers used in the networks feeding the rate potentiometers.

In the discussion of the block diagram, it was stated that the range
rate resolver received its voltage from one of the output windings of the
true air speed resolver. This cannot be done directly in practice, since
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the resolvers used must be open-circuited in order that the summation of
the voltage components be correct. To prevent loading, a 6AG7 cathode
follower is used as a buffer and driver for the range rate resolver rotor.
The rotor winding is placed directly in the cathode circuit although it is
tuned by a 8.0-uf capacitor to obtain a higher and resistive cathode
impedance.

With the Diehl resolvers used, a 2/1 step-up exists from rotor to
stator windings. Since the same ratio exists in all previously mentioned
resolvers, no serious effects are introduced; however, the voltages on the
output windings of the range rate resolvers are the result of two cascaded
resolvers operating on the input signals. In order to correct for this
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detector Thyratron e\r/g A yl g
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shaft
Fia, 7-18.—Velocity servo block diagram.

discrepancy in relative scale factors, the actual voltage impressed on
the rotor of the range rate resolver is only one-half the output voltage
from the true air speed resolver. The attenuation is accomplished by
the 330-ohm resistor placed in series with the rotor winding. Thus, the
cathode-follower stage serves both as an impedance matching element
and as an attenuator to equalize the existing scale factors.

The interconnections of the respective stator and rotor windings are
as shown in Fig. 7-13. The input impedance of the velocity servos is
large, since the signal is applied directly to the control grid of a vacuum
tube, no grid resistor being necessary.

The series circuits comprising the resolver stator windings generate
the correct voltages only if negligible current flows. If current passes
through the windings, a voltage drop occurs that causes an error pro-
portional to the winding impedance and current magnitude. In the
present case, however, the current flowing is essentially zero, since the
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velocity servo input iinpedance is so high. The respective windings can
therefore be connected in series as shown in ¥ig. 7-13, and no error will
exist if the voltages are all in phase.

The output voltages representing the desired vector summations as
discussed previously arve converted into mechanical shaft rotations whose
angular velocities are proportional to the respective voltages by means of
the three velocity servos. The three channels are identical. The block
diagram is given in ¥ig. 7-18, and the schematic in Fig. 7-19.

As shown in Fig. 7-18, the 60-cps input voltage to the velocity servo
is first amplified and then rectified to obtain a d-c voltage proportional
to the amplitude of the input a-c voltage. This d-¢ voltage is further
amplified in a direct-coupled amplifier whose output controls the power
developed by the power output stage. The d-c power output is used to

; To Dieh}
Signal 1 26 motor

Input o Parallel “T" _(_»
transformer [ Amplifier s network pz(d:ehr g?r'\lp |

Fia. 7-20.—Servoamplifier block diagram.

Signal 2

drive a Bodine d-¢ motor after being fed through a reversing relay
which is used to control the direction of rotation.

The position of the reversing relay is controlled by a thyratron which
in turn receives its control voltage from a phase detector. The phase
detector develops a d-¢ voltage whose polarity and amplitude are depend-
ent upon the phase and amplitude respectively of the input a-c voltage.
The thyratron conducts for only a control voltage in phase with the anode
voltage. If the input signal reverses, the relay arms change contacts.

From the block diagram (Fig. 7-18) it can be seen that the motor
drives a d-c generator whose output voltage is fed back to the rectifier,
after feeding through the reversing relay. Thus, when the input phase
reverses, the direction of motor rotation reverses which would reverse
the polarity of the generator voltage. Since the generator leads are
also reversed by the relay, the polarity of the generator feedback voltage
is kept the same independent of the phase of the input signal.

The complete schematic diagram for the velocity servo is given in
Fig. 7-19. Although no detailed discussion of this circuit is included here,
it is fully described in Radiation Laboratory Report No. 6145-10.

The block diagram of the servoamplifier that was briefly mentioned
in the discussion of Fig. 7-13 is given in Fig. 7-20, while the detailed
schematic diagram is shown in Fig. 7-21. The circuit needs very little
discussion, since it is very similar to the usual audio power amplifier
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with the exception of the parallel-T network. This network is included
to introduce a variable degree of phase-lead control for stability purposes.

Each of the two iaput signals is impressed on a primary terminal of
the input transformer so that the secondary voltage is proportional to
the difference between the two input signals. The difference signal is
amplified and applied to the control winding of the two-phase low-inertia
servo motor.!

Although the general discussion of the ground-range resolver and the
three servo loops presented the problems one at a time, this procedure
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Fia. 7-21.—8ervo schematic.

Input Amplifier Farallel "T" network ‘1 Driver Power amplifier
transtormer l
7k
l 20 2
0.1M

P
~t A-C to mator

s Power supply
= 24

pd

cannot be followed here, since the circuits are more closely interrelated.
The circuitry for these channels is givenin Fig. 7-22. The element
common to all these sections is the range potentiometer that is used to
develop an a-c voltage whose amplitude is proportional to the actual
slant range.

The potentiometer is fed from a low-voltage tap on a variable
auto-transformer which in turn is fed by an isolation transformer from
the 60-cps line. Since it is not appreciably loaded, the linearity of
the potentiometer (+0.1 per cent) determines the accuracy by which the
displacement of the slant-range shaft is converted to a voltage. The

t The operation of this servoamplifier is discussed in RL Report No. 645-2.
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1.2-k resistor in series with the range potentiometer serves merely as a
voltage divider.

The rotor of the ground-range resolver is driven by a 6AG7 cathode
follower whose control grid is directly connected to the arm of the range
potentiometer. The cathode-follower circuit is identical to that which
is used to feed the rotor of the range rate resolver discussed previously.
Since the gain of this cathode follower is nearly constant in the range used,
the rotor voltage varies directly as the range and is linear to about +0.2
per cent. The resolver output voltages are proportional to the ground
range and altitude respectively.
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Fia. 7-22.—-Ground-range resolver and servo channels.

The range voltage for use in the 1/p servo loop is also obtained from
the cathode follower that feeds the ground-range resolver. The 1/p
potentiometer which is turned by the servomotor is driven by a voltage
obtained from the arm of the 1/p variable autotransformer. The voltage
developed across the fixed resistor is fed back to the 1/p servo input,
where it is compared with the actual range voltage. Since the servo
loop acts to equalize the two input voltages, the servo motor drives the
arm of the 1/p potentiometer until this condition is fulfilled. The shaft
and arm of this potentiometer rotate an amount proportional to 1/p
This same shaft is geared to the ball-positioning mechanism of the eleva-
tion ball-and-disk integrator.

The adjustable resistor P;; is used to set accurately the value of the
proportionality factor between the current flow and the voltage fed
back into the 1/p servoamplifier. The arm of the 1/p variable auto-
transformer is used to make the scale factor of the servo matching voltage
the same as that of the input range voltage.
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The I/1 servo loop is identical with the 1/p loop with the exception
that the voltage whose amplitude is proportional to R comes from an
output winding of the ground-range resolver rather than a cathode fol-
lower. All other circuit details are identical with the channel discussed
above.

It has been stated that the actual aircraft altitude is presented as a
dial rotation. With an actual radar installation, the altitude must be
computed from the other observed data. A voltage whose amplitude
is proportional to altitude is obtained from an output winding of the
ground-range resolver as has been explained previously. The maximum
altitude permitted by mechanical design consideration was set at 35,000

h output
6.3V 60¢cps
Ground

B+300
h input

Fig. 7-23.-—Altitude amplifier.

ft, whereas the maximum ground range was set at 100 miles. Thus, the
maximum amplitude of the altitude voltage from the ground-range
resolver is only about 7 per cent of the maximum amp'itude of the ground-
range voltage. Since 2 higher voltage level is required for suitable alti-
tude servo operation, a linear amplifier is placed between the altitude
output winding and the input to the h servoamplifier. The schematic
diagram of this amplifier is given in Fig. 7-23.

A two-stage RC-coupled amplifier is used to drive a 6V6 power
amplifier. The output serves as one of the two input signals to the alti-
tude servoamplifier. Since the amplifier must be linear to better than
1 per cent in order that the altitude dial will present information with
1 per cent accuracy, a large value of degenerative feedback is included.
The feedback loop returns a portion of the output voltage to the cathode
of the first stage where it subtracts from the input signal.

With this amplifier, a gain of 60 is obtained and the linearity is of
the order of 0.5 per cent. It accepts input voltages up to about 1

. volt which corresponds to an altitude of about 40,000 ft. Thus, the
amplifier is operated linearly in the desired altitnde range from zero to
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35,000 ft, and the output voltage level is in the range leading to optimum
serve performance.

The matching voltage for the altitude servo is obtained from the
arm of the altitude potentiometer which is rotated by the h servo motor.
This potentiometer is driven from a line isolation transformer through
the 47-k resistor which serves as an attenuator. The servo loop responds
in a manner such that the potentiometer voltage is made equal to the
h voltage coming from the amplifier. Since the i dial is geared to the
altitude potentiometer arm, the dial will be positioned proportional to
the potentiometer arm and hence proportional to altitude.

7-11. Over-all System Operation.—Both the theory of operation of
the spherical coordinate integrator and the actual form of its reduction
to practice have been discussed in considerable detail in the foregoing
sections. The way in which the positional data from the integrator is
actually presented to the parent radar set in suitable form still remains
to be discussed.

The data defining the position of the aircraft with respect to the
moving ship ordinarily obtained by the radar set are range, azimuth
angle, and elevation angle. The equipment described presents this
information in the form of mechanical shaft displacements, as has been
shown, but some form of data conversion must be made before this
output information can actually be used. In order to understand the
necessity for this final data conversion, a brief discussion of radar trainer
operation will be found helpful.

The trainer generates i-f pulses corresponding in time to the actual
range of the aircraft from the ship. These pulses are fed into the receiver
of the parent radar set in place of the i-f signals normally feeding in
from the crystal mixer. In order that the proper azimuth and elevation
angle information be included, these i-f pulses are gated in accordance
with the relative positions of the antenna mount of the radar set and
the aircraft. When the position of the two coincide in both azimuth
and elevation angle, the i-f pulses feed through; however, if these condi-
tions are not fulfilled, the pulses do not feed through.

The time-modulation circuit that causes the i-f pulses to appear at the
proper time following the radar trigger is controlled by a d-c voltage.
The integrator must therefore develop a d-c voltage whose amplitude is
proportional to the displacement of the range shaft. This voltage can
then be used to control the linear delay circuit. This data conversion
is performed by gearing the arm of a linear potentiometer to the output
range shaft.

The azimuth and elevation angle information is obtained by mount-
ing 360° potentiometers on the radar antenna mount azimuth and elevu-
tion shafts and on azimuth and elevation output shafts of the integrator.
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Therefore, two azimuth and elevation potentiometers are present; and
if they are properly lined up, they can be used in two bridge circuits to
furnish the desired gating voltages. The voltage from such a bridge
circuit is a minimum when the arms of the two potentiometers in the
bridge are in corresponding positions. If either potentiometer shaft is
displaced, the output voltage will increase in the usual manner. Thus,
if the gating circuits are controlled so that the signal feeds through only
when the bridge voltage is a minimum, the synthetic radar echo appears
only when both potentiometer shafts are in corresponding positions.

The action is similar with respect to both the azimuth and the eleva-
tion bridge circuits, but they respond to motions in planes perpendicular
to one another. If the output voltages from the two bridges are properly
mixed before being applied to the gating tubes, the gating is dependent
upon the coincidence of both the azimuth and elevation angles of the
aircraft and the radar antenna mount. The signals, therefore, appear
only when the line of sight of the radar antenna mount intersects that
of the aircraft.

7-12.—Summary.—Two examples of electromechanical computer
design have been presented. While at first glance the devices deseribed
appear to be exceedingly complex, upon closer study each is seen to con-
sist merely of a collection of the simple computer circuits and devices
presented in preceding chapters (and elsewhere in the Series) coordinated
very much along the lines suggested by Chap. 2, and capable of design
by straightforward methods. The authors are confident that the near
future will see many more computing devices of this same general nature
take their places as working tools of seience and industry.

The computer designs discussed in this chapter should serve also to
underscore a point made earlier; namely, that there is an intimate rela-
tionship between computers and servomechanisms. While servomech-
anisms have been treated as a separate subject in the chapters which
immediately follow, it should not be forgotten that these devices are as
much a part of the computer designer’s ‘““bag of tricks” as any of the
devices presented in Part 1.
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CHAPTER 8
INTRODUCTION AND SUMMARY OF DESIGN PROCEDURE

By I. A. GreENwoOOD, Jk.

INTRODUCTION

8-1. General Principles of Servomechanisms.—The design and use
of servomechanisms have grown to be an extremely important part of
electronic and mechanical technology. The increasing demands of
engineering and science for greater accuracies, speeds, and efficiencies;
the comparative newness of many aspects of the subject; and the increas-
ing availability and use of wartime developments are factors that tend
to make the servomechanism field one of rapid growth and widespread
interest at this time. The exacting technical requirements of military
devices brought a great acceleration in servo development during World
War 11, and servos for military purposes were produced in vast quantities
during the war.

For the purposes of this book the definition of the term “servo-
mechanism’ as proposed by Hazen! and used by Hall? and others will
be used. According to this definition a servomechanism is “a power-
amplifying device in which the amplifying element driving the output
is actuated by the difference between the input and the output.” An
example of a servomechanism is the simple data-transmission system of
Fig. 8-1. With this system it is possible to turn the input shaft through
the angle 8; and to have this motion repeated by an output shaft rotation
of 6, at a remote location, with a power amplification. If the rotation
of the output 6, is different from the rotation of the input 8;, an error
voltage ¢ is developed across the rotor leads of the synchro control trans-
former.® This error voltage is phase- or sense-detected to yield a d-c
signal that when amplified and used to control power to the motor
will result in rotation of the motor tending to make 6, correspond to 6.,
Other schemes accomplishing the same end are, of course, used. At
first glance, it would appear that this is a fairly simple and potentially

tH. L. Hazen, “Theory of Servomechanisms,” Jour. Franklin Inst., 218, No. 3,
279-330, September 1934.

2 A. C. Hall, The Analysis and Synthesis of Linear Servomechanisms, MIT Servo-
mechanisms Laboratory, 1943. (Reprint of MIT doctorate thesis.)

38ee Vol. 17 for a detailed discussion of control transformers. The subject is
also treated in Sec. 13-2.

215




216 DESIGN PROCEDURE . [SEc. 8-1

very useful device. This is true. Its apparent simplicity, however,
may be misleading in that careful and intelligent design based on a knowl-
edge of feedback theory is needed in order to ensure that the resulting
simple device will operate as desired. There may be a surprisingly
close resemblance between the circuit diagram of a useful and well-
behaved servomechanism and the circuit diagram of a servomechanism
that will burst into violent oscillation the moment power is applied.
Once the dangers are recognized, however, the techniques of servo design
are sufficiently straightforward so that design and use of servos can and
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Fia. 8.1.—Simple remote follow-up servomechanism.

should become a useful professional tool for the average enginecr and
scientist.

It is of interest to inquire further into the advantages that servo-
mechanisms may offer. An important advantage follows from the
definition, that is, the ability to amplify power, usually mechanical
power. A second advantage, mentioned in connection with the servo
of Fig. 8-1, is the ability to transmit information from one place to another.
The combination of these two advantages, the ability to control large
powers remotely, has accounted for the development of a large fraction of
the servos that have been used to date. An advantage somewhat related
to the second listed above is the elimination of reaction on the controlling
element when large powers are controlled. An interesting application
in which this property is of importance is the use of servomechanisms to
allow unilateral flow of torque from one element to another in the M.I.T,
differential analyzer.! Other advantages of servomechanisms are the
result of their ability to effect transformations from one type of data

! Bush and Caldwell, “A New Type of Differential Analyzer,” Jour. Franklin
Inst., 240, 255-326, October 1945,
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representation to another, the most common transformation being from
electrical data to mechanical data. This ability to transform from one
data representation to another is of itself a valuable feature; it also allows
the techniques and advantages of feedback to be applied to systems
involving other than purely electronic elements (e.g., mechanical and
electromechanical elements), thereby increasing their accuracy of opera-
tion, speed, and efficiency and making possible automatic operation.

In Fig. 2-7 a servomechanism is used to operate the bridge computer
of Fig. 1-1. 'This illustrates the use of a servomechanism to apply feed-
back techniques to a loop involving electromechanical elements, thereby
changing the bridge into a device that may operate automatically.

8.2. Uses of Servos.—All of the advantages of servomechanisms
mentioned in the previous section apply to servomechanisms used in
computers. This type of usage was discussed in Sec. 2:7. Examples of
computers using servos are numerous, particularly in the field of military
devices. A differential analyzer application has already been mentioned.
Servos have been used in computers for ground- and ship-based anti-
aireraft gunnery, air-to-air gunnery, and bombing.

The ability of servos to facilitate control at a distance finds many
industrial and military applications. Practically all heavy antiaireraft
artillery, for example, is servo-controlled by the output of some type of
computer usually located remotely from the guns. The use of servos for
control of industrial machinery is a rapidly expanding field, a spectacular
example of such an application being a servo-controlled aircraft wing
spar milling machine! which cut the time required for a complicated
machining job from 133 hr to 5 min. Servomechanisms have been used
for turning the tuning condensers of push-button-controlled radios. "An
interesting application of servomechanisms has been in the manufacture
of fissionable material? for the atomic bomb, in which whole compli-
cated processes were remotely controlled. This is but one example from
what is probably the largest field of application of servomechanisms—
industrial process control. An extensive technology?® on process control
has already been built up. It is of interest to note that many of the
control devices used in present-day process control techniques are based
on other than electronic methods.t There is good reason to believe that
many of the electronic devices reviewed in this volume and similar

1 Electronics 17, 146, October 1944.

*H. Smyth, Atomic Energy for Military Purposes, U.S. War Dept., 1945, Secs.
7, 27, and Appendix 4.

3 See for example, D. P. Eckman, Industrial Process Control, John Wiley & Sons,
New York, 1945; and E. S. Smith, Automatic Control Engineering, McGraw-Hill
Book Co., Inc., New York, 1944.

¢ Cf. Sec. 12-15.



218 DESIGN PROCEDURE [SEC. 83

devices will see greatly increased use in the process control field during
the next few years.

8-3. Definitions of Terms and Concepts.—Hazen’s! and Hall’s? defini-
tions of the term servomechanism as ‘“a power-amplifying device in
which the amplifying element driving the output is actuated by the
difference between the input and the output’’ has already been mentioned;
for the purpose of this book, this definition will be used. There are
alternate definitions in the literature, however, that are of interest. The
ASME Proposed Glossary of Automatic Control Terms® uses the term
‘‘automatic controller’” in nearly the same sense that servomechanism
is here used, defining it as a ‘“mechanism which measures the value of a
variable quantity or condition and operates to correct or limit deviation
of this measured value from a selected reference.” Two differences are
noted: lack of an implied power amplification and use of a “selected
reference’’ as opposed to “an input.”

Current usage considers the words ‘“servo’’ and “servomechanism”’
as equivalent, although Brown gives a distinction between the two terms
in an early paper.? A recently proposed British definition® of the term
‘““servo system’ is ‘“a power amplifying, automatic, error-actuated
control system.”

Following a definition by Harris,® a “regulator” is considered to be
a special type of servomechanism which tends to keep a physical quantity
at a constant level, whereas a servomechanism may make the physical
quantity vary over a predetermined cycle or vary as a definite function
of some other arbitrarily varying quantity. A recently proposed British
definition” of the term ‘“automatic regulator system” differs only slightly
from Harris’ usage in defining it as ‘“an automatic error-actuated control
system, the input signal to which is preset to a constant value or to a
series of values varying with respect to t'me in a predetermined manner.”
The British® definition will be used in this volume for the term ““ automatic
control system’” or merely ‘‘control system,”” defined as ‘“an arrangement

! Hazen, loc. cit.

2 Hall, loc. cit.

3 Reproduced in Eckman, op. cit., pp. 224-230. ASME stands for American
Society of Mechanical Engineers.

*G. S. Brown, “Behavior and Design of Servomechanisms,” NDRC Sec. D-2
Report, November 1940.

® Ministry of Supply Servomechanisms Panel, Glossary of Terms Used in Control
Systems with Particular Reference to Servomechanisms, published by Military College
of Science, January 1946.

®H. Harris, “The Analysis and Design of Servomechanisms,” NDRC Report.
1942.

7 Ministry of Supply Servomechanisms Panel, op. czt.

8 Ibid.
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of elements interconnected in such a way that the operation of each
depends on the result of the operation of one or more other elements,
the purpose of which is to control some condition of a body, process, or
machine.” Hall’s' usage of this term is nearly the same but includes
the idea of power amplification.

It is of importance to distinguish between the types of control that
Hall has referred to as ‘‘ open-cycle control” and “closed-cycle control.”
Open-cycle control works on signals received solely from a controlling
instrument, while in closed-cycle control system, additional signals that
are derived from the position of the device or the state of the process
being controlled are received by the controller. Hall’s term “open-cycle
control”” has been referred to by the ASME Glossary® as ‘“‘some form of
automatic operation,” and by the British as an ‘““unmonitored control
system’’ or “input-actuated control system.”

The term ““error’’ is used by most authors to represent the difference
between the servo input and output. The ASME recommended term
for this is ““deviation.” The terms ‘‘misalignment” and “difference’”
are occasionally used.

When highest accuracy in a servomechanism is required, a ‘“ continuous
control system”’ is usually used. Hall?® defines such a system as one in
which ““a definite and continuous corrective action is developed by the
servo controller and applied to the device being controlled no matter
how small is the error in the position of that device.” The majority
of the devices covered in Part II of this volume will be continuous-control
devices or devices operated such as to closely approximate continuous
control. For example, a vacuum-tube motor control is a ‘‘ continuous
control’’; an on-off relay motor control is not.

Tor the purpose of this volume, a distinction must be made between
instrument servos and power servos. The present treatment is limited
to instrument servos. An instrument servo is arbitrarily defined as a
servo rated at less than 100 watts maximum continuous output. - The
term ‘“‘instrument’’ in this title is derived from the fact that most of the
servos discussed will be those used in instruments, but exceptions will
be found. A synchro system by itself is not here considered to be a
servo, since it involves no power amplification, and is not treated. The
use of straight synchro systems is discussed in Vol. 17, while Vol. 25
treats higher-power servomechanisms.

The term ‘“nonlinear servo” will be used frequently in this volume.
Two types of nonlinearity arc recognized. In one type, clements such
as amplifiers or motors are nonlinear. In the other type, the gain of the

' Hall, loe. cit.

z [ickman, op. cit., pp. 224-230.

3 Hall, loc. e1t.
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servo varies over the working range of the inputs and outputs; but for
any small region of the working range, the performance approximates
that of a servo with linear elements operated at a gain determined by the
particular region of operation chosen. An example of this type of non-
linearity is the resolver servo of Sec. 14-3. Obviously, if gain varies
drastically over a small region, nonlinearity equivalent to the first type
may result. Both types of nonlinearity may be present at once. Non-
Anearity is treated in Sec. 11-11.

A convenient classification of servos may be made in accordance
with their uses, the principal examples of which are ‘“ position servos”
and “velocity servos.” A ‘“position servo’’ is one in which the displace-
ment of an output shaft or its equivalent is controlled by some input
variable. The simple servo shown in Fig. 8-1 is thus a position servo.
A “velocity servo” is one in which the first derivative with respect to
time of the output is controlled by the input variable or the error signal.
In some cases, there may be difficulty in deciding which of these classifica-
tions is appropriate. Consider, for example, the case of a velocity servo
used to integrate an input voltage. Since the input voltage is usually
measured across a resistance, the input might be thought of as charge
rather than voltage, in which case the output rather than the derivative
of the output would seem to be the quantity directly controlled by the
input, and one would be tempted to classify this as a position servo.
Its correct classification as a velocity servo is clarified by examination
of the error signal controlling the output. In this case the error signal
is a voltage that is a function of the first derivatives of assumed input
and output. There are a few types of servos that do not fit either posi-
tion or velocity servo definitions very well; nevertheless, these descriptive
terms are widely used and are appropriate in most instances. Servos
could also be designed such that the second or higher derivatives of the
output would be controlled by some input variable, but such servos are
extremely rare.

8-4. Plan and Scope of Part II.—Following the above introductory
sections are a number of sections dealing with the recommended proce-
dures and techniques for designing electronic instrument servo systems.
These constitute a summary only, with references to following sections
where detailed discussions of each of the various components may be
found. Chapters 9, 10, and 11 present a theoretical background for the
study of the characteristics of servo components and of over-all servo
systems, emphasizing particularly factors of stability and over-all
accuracy. This theoretical discussion approaches the servo design
problem from- both the transient and steady-state viewpoints. A
number of special problems, such as data smoothing, nonlinearity,
zear ratios, ete., are discussed in Chap. 11. Chapter 12 is devoted to a
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rather detailed discussion of the principal components of the usual elec-
tronic servo systems, namely: data input and output devices; amplifiers,
phase detectors, modulators, etc.; motors and other power devices; and
power-control circuits. Chapter 13 summarizes practical techniques
for obtaining measurements of the characteristics of servo components
and servo systems. Chapter 14 summarizes 2 number of special servo
systems. Detailed circuit diagrams are included.

Although the emphasis of this treatment is on electronic devices,
brief references to some competing nonelectronic devices have been
included.

DESIGN TECHNIQUES

8.6. Preliminary Design Data.—The first step in the design of a
servomechanism is the determinalion of what must be designed. This is
important, and time spent in carefully stating design requirements will
generally be saved in succeeding stages of the design.

Type cf Servo Regquired.—It must first be decided what functional
type of servo is required, that is, velocity servo, position servo, ete.
Other classifications of servos that have been mentioned, such as con-
tinuous vs. noncontinuous or linear vs. nonlinear, specify alternate ways
of fulfilling given requirements rather than fundamental classifications
of the requirements with which this section is concerned.

Data Input and Output Representations.—The input and output
representations of data must be specified. The subject of data representa-
tion is discussed in Secs. 2-11 to 2:13 and in Secs. 12-1 to 12-6. Before
the servo of Fig. 8-1 could be designed, for example, it would be necessary
to know that the input data representation is a mechanical shaft rota-
tion and that the output data representation is also a shaft rotation.
Scale factors and ranges must, of course, also be known.

Power Available—The power available should be specified as to
voltages, allowable currents, and, if alternating current, the frequency.
Voltage and frequency tolerances are very important in servo design
and should be carefully determined.

Quality.—It is important to specify accurately the minimum accept-
able quality. A design procedure must attempt to yield a servo a factor
of safety better than this minimum; to go very much further may be a
waste of expensive equipment and design time. In many cases the
requirements on a servo are so severe that one must go to extremes of
present techniques to achieve satisfactory performance; in other cases
cheap simple devices and rudimentary design may suffice.

Quality may be expressed in a variety of ways. Maximum, average,
or probable errors may be stated for specified inputs. Probable or
average errors are usually associated with input and noise specified in
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terms of their power-frequency distributions. Maximum errors under
the special input conditions of velocity and position steps of given mag-
nitude are frequently used. Steady-state velocity and accleration errors
are very convenient means for specifying quality; it will be shown later
that they may easily be related to the feedback loop decibel gain vs.
log frequency characteristics of the servo. Bandwidth is frequently
used as an index of “speed of response,” a term somewhat loosely used
but referring principally to the acceleration of a servo.

It is usually desirable to specify the damping of the servo. For this
the damping factor (or factors) may be used; a more convenient index
of stability is the height of the peak of the sinusoidal steady-state over-
all response curve (¢f. Chaps. 9 to 11). The smoothness of operation
may also be specified.

Load Specification.—1t 1s necessary to specify the force or torque
and inertial load on the output of the servo and the speed range over
which it must operate, including slewing.

Other Factors.—The list of design factors of Chap. 19 should be
checked; appropriate factors listed as design requirements; and specific
limits and operating conditions chosen for these design factors. Factors
applying particularly to servos are the following: slip ring and com-
mutator electrical noise, operating position, backlash, hysteresis, life,
and reliability.

8-6. Design Procedure.—The following discussion of design procedure
is intended merely to summarize the recommended steps in designing a
servomechanism after the preliminary design data have been assembled.
For most steps, a reference is given to a succeeding section for detailed
treatment of the problems involved. Although arbitrary, the procedure
has been found to be useful.

After completing the preliminary specifications, the designer may
proceed as follows:

1. Choose the motor and motor-control circuit or their equivalents
and the approximate motor gear reduction. Chapter 12 treats
these components. Problems of gear ratios, friction, and back-
lash are discussed in Sec. 11-12.

2. Choose the data input and output devices and their approximate
gearing, unless these have already been specified in the preliminary
design data. See Secs. 12-1 to 12-8 for a detailed discussion of
data input and output devices.

3. Choose types of circuits for the amplifiers, phase detectors, modu-
lators, demodulators, etc., required. In the choice of these cir-
cuits sufficient amplification should usually be allowed to make up
a loss in gain of roughly 10 (20 db) due to phase-lead circuits which
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may be used for stability in addition to the usual factor of 2 to
4 for tube aging, line voltage changes, component aging, etc. See
Secs. (12-10 to 12-12 for further discussions of these circuits. An
important part of this design step is a choice of the type or com-
bination of types of controller characteristics that are to be
achieved. Chapters 9 to 11 discuss these characteristics.

4. Make a first design in some detail for each of the above por-
tions of the servomechanism. It should be kept in mind that only
parts procurable in the desired quantities should be specified, even
in this early phase of the design. The remarks of Sec. 2:2 apply
here.

5. Determine by calculations, measurements, and reference to pre-
viously established data the detailed characteristics of the motor
and control equipment; the amplifiers, phase detectors, modulators,
etc.; and the input and output devices. This may or may not
include phase-lead circuits or devices. See Chap. 13 for a dis-
cussion of the techniques of such measurements. The theory of
Chaps. 9 to 11 will be found helpful in any calculations required.

It may be desirable to build up a breadboard model of the
power-control circuit so that empirical data on the motor and
control circuit combined may be obtained. This procedure is
particularly justified when local feedback is used in the power-
control and motor circuits, resulting in more nearly linear over-all
characteristics for the combination than for the motor alone or
when the waveforms of the controlling circuit are so complex as
to make the accuracy of theoretical calculations questionable or
the labor of computation excessive.

6. On the basis of the information obtained in the last step, design
in detail the phase-lead circuits, integral control circuits, amplifiers,
velocity feedback circuits, dampers, or other devices or circuits
where changes in the shape of the transmission-frequency char-
acteristics will improve the stability, accuracy, or smoothness.
The theoretical treatment of Chaps. 9 to 11 should be referred to.

7. Work over the design to make all elements consistent with the
preliminary design considerations and specifications and with each
other.

8. Build a prototype or breadboard model to test performance and
as a check on the theoretical calculations. It is good practice tc
test such a model at some time with all limit tolerance parts, with
tolerances chosen such that resulting errors will add.

A breadboard model or prototype model also allows the final
adjustment. of component values that is often necessary even
with good theoretical design.
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9. Determine tolerances and specifications for each and every com-
ponent. A design cannot be considered complete until this has
been done in every detail and the component is shown to be obtain-
able in the quantity required. Failure to complete this may mean
that a single unsatisfactory component will necessitate a complete
redesign, although this is not likely.

The steps of this procedure, particularly the first three, are intimately
related. It will usually be necessary to repeatl the procedurc several times
before a fully satisfactory design is achieved.

8-7. Design of Servos by Experimental Techniques.—For low-quality
servos or for designs that are similar to previously tested designs, it is
sometimes safe to omit the theoretical design of stabilizing circuits.
Final component values under such a shortened procedure are determined
by experiment and test, using limit tubes and components if possible.
Preliminary design is based on sufficient gain to allow for a stabilization
circuit attenuation factor of roughly 10, unless other stabilizing means are
used, and must include the right type of controller characteristics as
mentioned in Step 1 of the design procedure of the preceding section.
It is important that the servo designer understand the theory of use of these
various {ypes of controller circuits regardless of whether or not the theoretical
calculations are made. A person who works with servos can rapidly
acquire an ability to adjust an existing design to near-maximum per-
formance. When this ability is combined with a basic understanding
of the theory of servomechanisms and of the many special-purpose cir-
cuits and devices available, the resulting combination of skills will fre-
quently allow good servos to be produced rapidly without extensive
theoretical calculations. Acquisition of the adjustment skill alone,
however, is usually wasteful of time in the long run.

Where a design is to be produced in quantity, it is desirable to know
what the accuracy and stability safety factors will be under adverse
combinations of production component tolerances. The extreme impor-
tance of having this information for production designs normally justifies
both theoretical analysis and careful experimentation, although careful
experimentation alone may suffice in some cases.




CHAPTER 9
SERVO THEORY; INTRODUCTION AND TRANSIENT ANALYSIS

By G. L. KrEEzER

INTRODUCTION

9-1. The Aims of Servo Theory.—The following three chapters deal
with the application of mathematical methods to problems of servo
design and adjustment. A later chapter deals with the considerations
relevant to the selection of the components of a system intended to meet
given performance specifications. Ways of evaluating this provisional
choice to determine if a system made up of these components will, in
fact, perform as required will be considered here. Theoretical principles
are introduced at this point, since it will be helpful for them to be kept
in mind in the survey of available components that follows.

To evaluate a system made up of a given set of components, the most
obvious procedure is to construct a trial model and determine its per-
formance through actual observation and test. Such a procedure is
more readily feasible in the case of small instrument-type servos than it
is for systems of greater power level, but even here it may be uneconomical
of time and materials, requiring a long sequence of trial constructions
and tests. It is natural, therefore, to attempt to carry out the trial
construction on paper through the medium of a mathematical model.!

So-called servo theory makes possible the construction of a symbolic
model of the proposed system in the form of mathematical equations,
and the carrying out of the appropriate tests, experiments, and adjust-
ments on this model by means of mathematical operations. The basic
questions in servo theory are, therefore, the same obvious ones that any
experiments with a physical model would attempt to answer.

1. How does this system perform?

2. How does its performance compare with the standard specifications,
set up on the basis of practical needs?

3. If it fails to meet performance specifications, how can it be modi-
fied so that it will do so?

! Theoretical treatment has the additionel merit of facilitating specification of
production tolerances of the components to be used in a given system. For on a
mathematical basis, the effect on performance of variations in magnitude of com-
ponent parameters may be predicted. Cn an experimental basis, trials are nccessary
of the worst cases to be expected in practice.

225
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The methods of servo theory are designed merely to make possible
answers to these simple questions. In the present account, these ques-
tions will be used to provide the framework for our survey. Thus,
under the subject of the determination of system performance will be con-
sidered the methods available for finding out how a given system per-
forms; under the subject of evaluation of system performance, the ways
available for comparing its performance with specifications; and under
the subject of correction of system performance, ways for removing defi-
ciencies in performance through suitable modifications in the structure
of the system. In a final section on special problems, some problems of a
more complex or special type will be examined. DBut it is necessary to
review first certain preliminary concepts and definitions that will be
utilized in subsequent discussions.

PreLiMiNarRY Concurrs AND METHODS

9-2. Transformation and Operational Methods.—In the present
survey of servo theory, considerable use will be made of the Laplace
transformation. [t is necessary, therefore, to review some of the salient
features of the method.

The Laplace transformation provides a way of representing a function
of a real variable f(t) by a function of a complex variable F(s), and con-
versely. The variable ¢ will be regarded here as standing for time, and
the complex variable s as standing for ¢ + jw. By means of the direct
Laplace transformation, we may pass from the real function f(f) to the
complex function F(s). This transformation is designated symbolically
as

L0} = Fls)

and is read ‘“the Laplace transform of f(¢) equals F(s).” By means
of the inverse Laplace transformation, we may pass from F(s) to f{t).
In symbols,

LF(s)] = fO)

and is read, ‘“‘the inverse Laplace transformation of F(s) equals f(£).”!
The equations? defining these two transformations are

!In representation of functions in the two domains, the practice of Gardner and
Barnes of representing functions of a real variable by small letters and the correspond-
ing function of a complex variable by large letters will, for the most part, be followed.
Occasionally, the same letter will be rctained for the corresponding functions in
the real and complex domains, where ambiguity might otherwise result. In every
case, however, the domain in which the function lies will be indicated by the variable

inside the parenthesis. Thus e(t) is a function of time, and e,(s) is its Laplace trans-,

form, a function of the complex variable s.
?For a discussion of these equations and the conditions for their validity see
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F(s) = £lf(9)] = '/;mf(ff)c‘“ dt, 0a < o, (1)
and
) = &'F9)} = L /Him F(s)et ds 0=1? (2)
f - 8= 21r_] c—jw ’ g, < C

The possibility of a function being represented as a function either of
a real variable or of a complex variable is of value in that a problem
difficult to solve in one domain may be relatively easy in the other.
Difficulties may then be bypassed by shifting to the less difficult domain.
In the case of the problems arising in servo theory, this advantage will
be utilized chiefly in the provision of relatively simple procedures for
the solution of linear differential equations. Differential equations
involving functions of time become after transformation algebraic
equations in s. These equations can be manipulated easily by purely
algebraic operations. We may solve for the function of interest, in the
complex domain, and then pass to the corresponding real function that
provides the solution of our differential equation. Certain special
advantages arise in relation to the concept of transfer function which is
considered below. It should be noted that since our direct transform
F(s) is a function of a complex variable, it is feasible to apply, where
useful, any of the special procedures that form a part of complex function
theory.

So much by way of preliminary orientation. The chief relation-
ships that we shall need to use in our treatment of servo systems may now
be summarized.! The starting point for a given problem will typically
be a differential equation made up of functions of ¢&. The first step in
the use of the Laplace transformation will consist in application of the
direct Laplace transformation to both sides of the equation. This
operation might be carried out by application of the defining Eq. (1). But
since certain types of function and algebraic operations on functions
repeatedly occur in different equations, it has been found convenient
to set up tables of transform pairs such as Tables 9-1a and 9-1b, which

M. F. Gardner and J. L. Barnes, Transients in Linear Systems, Vol. 1, Wiley, New
York, 1942, pp. 100-107.

! For the derivation of these relationships and a fuller treatment of the Laplace
transformation, the following references may be consulted: Gardner and Barnes, loc.
cit.; N. W. McLachlan, Complex Variable and Operational Caleulus, Cambridge,
London, 1942; R. V. Churchill, Modern Operational Mathemalics in Engineering,
McGraw-Hill, New York, 1944; G. Doctsch, Theorie und Anwendung der Laplace
Transformation, Springer, Berlin, 1937; F.. 8. Smith, Automatic Control Engineering,
MeGraw-Hill, New York, 1944, pp. 302-308. A bricf treatment may be found in
Vol. 18 of this seriexs.  The present aceount is based largely on Gardner and Barnes.
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show the result of applying the direct and inverse transformations to
commonly occurring functions and operations.

TaBLE 9-la.—LAPLACE TRANSFORM Pairs FOR OPERATIONS

No. @ F(s) Special conditions and definitions
a |af(t) aF(s) a is a constant or a variable independent
of t and s
b S X £2:(0) | Fi(s) * Fau(s)
. 5i{i<t_> sF(s) — f(0+) F(0+) is value of f(t) immediately fol-
t lowing ¢t = 0

@) o o) < H® ]

d “dir s2F(s) — sf(0+) —~ f'(0) | f'(0) = at o
F(s) _ f*0+) 7 = Jfw dt
t) dt PRRLLANRIE S 4
e | s s SHO+) = Ok -0t
TanirE 9-1b. Laprace TransForM Parmrs For Funcrions*
N [J0=E[F@] | Fe=e[ro] | o Ssies | 0 hetion
-at
. i ™~
b sin wi s’z%&,—z 0 Jjw [ %
« N
¢ cos wt Pe Ry 0 o -FOQ(f
- sta ative Hgf:;t‘“
d ¢ cos wt (s+a)?+w? -« ~a-jws | Y-

1 u{t)
€ 1, or u(t) —;— 0 "*—{" .
: /é‘ /

2n
order pole
I ——"

9 ult-a) + oS 0 _+_ ﬂ—mm
i-a

1
S [2 37 0]

* Modified from tables in Gardner nnd Barnes. op. cit., pp. 120, 332, 356: and E. S. Smith, Automatic
Control Engineering, McGraw-Hill, 1044, pp. 3224/,

Table 9-1a shows the effect of applying the direct transformation to
the most commonly occurring operations. In Column 2 is shown the
real function f(£); in Column 3 the equivalent complex function F(s),
obtained after application of the direct transformation. Column 4
specifies the special conditions under which the correspondence is valid.

Table 9-1b is a similar table for specific functions. Column 2 gives
the real function f(f); Column 3 the corresponding complex function
F(s). In any given problem, one need only find the appropriate func-
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tion in the table and can then write down the function in the other domain
to which it corresponds, much as he would use a table of integrals.
Column 4 gives g, the o of absolute convergence, i.e., the minimum value
of the real part of s for which f(¢) can be regarded as the inverse transform
of F(s).! Columns 5 and 6 give a graphical representation of the trans-
form pair in question. Thus column 5 shows the location in the complex
plane of the poles of the function F(s), and Column 6 the graph of the
type of time function corresponding to this location of the poles.? Deter-
mining the location of the poles of a complex function F(s) is of great
importance, since the location and order of the poles establish the
nature of the time function that appears on carrying cut the inverse
transformation.

It may be of interest to add a few words on the relation of the Laplaze
transformation to the historically older operational methods derived
from Heaviside. The Laplace transformation method has been char-
acterized as the modern equivalent of the Heaviside operational calculus.
The expressions derived by the two methods show marked similarities.
Smith has aptly referred to them as ‘““two dialects of the same mother
tongue.””® The chief differences consist in the method used to represent
input functions and in the method of inserting initial conditions. The
differences in appearance are at a minimum when the initial conditions
are zero. Thus, if with initial conditions zero the Laplace transformation
is applied to a differential equation to obtain an algebraic equation in s,
the same result could be obtained by substituting s for the differential
operator d/dt and 1/s for the integration operator, just as in the case of
the operational calculus. Where time functions such as 6;(¢), 6,(1), or
E(t) occur, they are still written as functions of £ in the case of the

1 8ee Gardner and Barnes, op. cif., pp. 102, 122f.

2 It will be recalled that the poles of a complex function F(s) constitute a certain
type of singularity of the function, singularities being the values of s for which F(s)
or its first derivative fails to be finite and single-valued. (8ee MecLachlan, op. cit.,
pp. 8-14.) If it is assumed that F(s) is a rational function, it may be represented as
the ratio of two polynomials P(s) and @(s) of degrees m and n respectively. If the
roots of P(s) and Q(s) are known, then the function F(s) can be represented as in Eg.

(3).

_PG6) _ G Asds ) - 0 (st sm)
FO =00 = 6 F s T - 6 F s ®
where —s5, —S5, + + -, —8m are the roots of P(s) = 0, and —sy, —s8,, - - - —5n

are the roots of Q(s) = 0. If identical factors in numerator and denommator have
been canceled out, and if s is given the value of any one of the roots of the denomi-
nator, Q(s) will equal zero and F(s) will equal infinity. The roots of Q(s) are there-
fore designated as “poles,” first-order poles if the root occurs only once, second-order
poles if & particular root oceurs twice, and so on. In similar manner, the roots of
P(s) are called the “zeros” of the function F(s}.

3 Smith, op. cit., p. 303.
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Heaviside operational method but are written as functions of s in the
case of the transformation method. Consequently, in the operational
calculus, operational expressions in p may be found combined with time
functions, whereas such hybrids will not occur if one is using a transforma-
tion method. Equations will contain only functions of time in the real
domain or only functions of s in the complex domain. A more fundamen-
tal difference between the two methods lies in the fact that the s of the
expressions obtained by means of the Laplace transformation is a complex
variable whereas the p or 1/p of the expressions obtained in the Heaviside
calculus are merely symbols for the operations of differentiation and
integration. Despite this difference in the fundamental significance
of the variable s or p,! it has been customary to refer to both types of
expression as operational expressions, a practice that will also be fol-
lowed here.?

9.3. Transfer Functions.—A concept that pervades the entire field of
servo theory and is basic in the application of the frequency method of
analysis is that of transfer function.® The nature of the concept may be
understood by considering its relation to the differential equation used
to describe a given system. Let us assume a system describable by an
ordinary differential equation with constant coefficients, such as Eq. (4).
The independent variable i1s time ¢, and the dependent variables 8; and
8, are regarded as functions of time. In functional notation they may
be written 6;(f) and 6,(t). The term 6,(f) can be regarded as the forcing
function or input signal of the system, and 6,(¢) as the response or output
signal. The transfer function is defined as the ratio of the output to

1 The particular symbol used in operational expressions whether s, p, \, or any
other is, of course, trivial.

2 For further discussion of the relation of different operational methods, see
Gardner and Barnes, op. cit., pp. 99-107 and pp. 359-366; McLachlan, op. cit., pp. vi,
115; and Smith, op. cit., pp. 302-306.

1 Somewhat different names have been used by different authors in referring to this
concept. Thus Gardner and Barnes, op. cit., pp. 132, 152, usc the term system func-
tion. This is a term which we should have preferred except for the possible implica-
tion here that the term applies only to the entire servo system. H. W. Bode, Nefwork
Analysis and Feedback Amplifier Design, Van Nostrand, New York, pp. 15, 227f., in
general uses the term zmmittance function, although at times he also uses the term
transfer function in the sense used here. A. C. Hall, Analysis and Synthesis of Linear
Servomechanisms, MIT, uses the term transfer function; but in defining it, he seems to
limit it to what we call the feedback transfer function. Writers following the termi-
nology of the Heaviside operational calculus usc the term operators. MecColl, Servo-
mechanisms, Van Nostrand, New York, in dealing with steady-state relations, uses
the term iransmission ratio. The familiar concepts of transfer impedance and admit-
tance functions of electrical circuit theory may be regarded as special forms of transfer
function. See K. A. Guillemin, Communication Networks, Vol. 2, Wiley, New York,
1935, p. 475.
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the input, after the differential equation has been transformed to an
algebraic equation through the application of some one of the methods
of operational calculus (Heaviside calculus, Fourier transformation, or
Laplace transformation). These steps are carried through for Eq. (4),
with the Laplace transformation being used to transform the equation.
We may assume that the initial conditions are all zero.

d6,(0) | .df.(l) _ ,
S g = 6, (4)
d26,(t) d0.() | _ orp

£ [J dﬁ-] + & [f T] = £[6:(D)], (8)
Js20,(s) + fs8.(s) = 6i(s), (6)
(Js* + fs) 8,(s) = 8i(s), @)
and
0,(s) _ 1
0 "I ER (8)

In accordance with our definition, the ratio 6,(s)/6;(s) may be designated
as the transfer function of the system. The chief advantages resulting

-<—P(8)4-1

L 6i(s) 1 6,(s)
Jsz +fs

Y16, 9:-1.—Block diagram illustrating use of transfer function.

from use of the transfer function concept in servo theory may be briefly
sammarized.

1. The transfer function fits in readily with the representation of
complex systems by means of block diagrams. Thus a given block, in a
block diagram, corresponds to the
transfer function. The forcing g rw 1B 5o B0 g [B@
function, in operational form, is : ’ ’
considered as the input; and the I 9-2.—Combinations of transfer func-
response, in operational form, as tions.
the output. Thus Eq. (8) may be represented by the block diagram of
Fig. 9-1. A sequence of such units in cascade, as in Fig. 9-2, can be used
to represent a set of independent transfer functions. This correspondence
will be clearer from the discussion below on the combination of transfer
functions.

2. The response of a given system to an arbitrary forcing function
can be simply represented as the product of the forcing function, in
operational form, and the transfer function. This result follows directly
from the definition. Let us represent the transfer function as P(s).




232 SERVO THEORY: INTRODUCTION [Sec. 94

Then,

0.(s) _
0;‘(8) - P(S),

8.(s) = P(s)6:(s).

To obtain 8, as a function of time, it is necessary only to transform the
function P(s)6;(s) to a time function by means of the inverse Laplace
transformation.

3. The transfer function concept provides a convenient way of obtain-
ing the over-all aquation of a system from the transfer functions of com-
ponent units. Let us consider the system represented in Fig. 9-2.
Reading from left to right, the output of each unit is the input for the
next. The over-all transfer function E4(s)/E(s) may be readily found,
since it will be the product of the component transfer functions. Thus,

518 = P(s)P4(s)Ps(s). ©

4. A special case of the general transfer function P(s) is the frequency
transfer function P(jw). The independent variable (s) of the transfer
function P(s) is complex and may be regarded as equivalent to ¢ + ju,
with ¢ the real part and jw the imaginary part of the complex variable (s).
If ¢ is taken as 0, s = jw and can be substituted in the transfer funcmon
in place of (s). Accordingly, Eq. (8) becomes

6,(jw) _ 1 . 1 )
0:(jw)  Jjwr+ flo —dw®t fiw

(10

This form of the equation can be designated as P(jw). Since « can be
regarded as representing the angular frequency of a sinusoidal function,!
this form of the transfer function leads to the representation of response
of a system as a Fourier spectrum. The means for computing this Fourler
spectrum from the transfer function will be desecribed later. Thus
P(s) and P(jw) may be regarded as two alternative forms of the transfer
function, and the discussion given for the P(s) form holds also for the
P(jw) form.

9-4. Generalized Block Diagrams and Components of Servo Systems.
Figure 9-3 shows the chief functional units of a servo system together
with the symbols that will be used to represent the different parts of the
system and the signals occurring at various points. These symbols
may be defined as follows:

1 The basis for this relationship is given in Table 9-1b. It depends essentially on the
nature of those transform pairs which show the correspondence of the imaginary part
of the roots of the characteristic equation and the time function for which it stands.
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6;(f) = the input time function signal, or disturbance,
8,(t) = the output time function signal, or response,
E(t) = the servo error, defined as equal to 8;(t) — 6.(2),
H(s) = the operator or transfer function representing the controlled
member,
C(s) = the controller operator or transfer funection. It represents
the effect that the controller member exercises on the error.
The physical controller may be defined as including all the units
involved in conversion of the error signal to the forcing function that is
applied to the output member. In the usual case, in which the output
member is a mechanical load, its forcing function (or input) is a torque,
and the controller will incude an error-corrective network, amplifier, and

Output transfer function
8, _ _KGls) P >
6,(8) 1+KG(s)
Error transfer function Feedback transfer function
E(s) 1 6, (8)
— . on = —>
0,(8) 1+KG(5) El =~ KG@
9,(s) E(s) Tz (s) Output or B(8)
6; (0 Error £ Controller L controlled % >
input |  detector Error C) Torque mIe{r?l:;er Output
8
A

~¢

Fia. 9-3.—-Block diagram of servo system.

motor. Corrective networks are those which are inserted in-a system
to improve performance properties through suitable modification of the
frequency-response curves of the system and therefore of its transient
or steady-state response. They are called error corrective networks if
they operate directly on the error signal.

In the simplest servo system, that characterized by a proportional
controller, corrective networks of any kind are absent and the motor
torque is directly proportional to the error. A derivative controller is
one in which the corrective network operates on the error signal to give
its (approximate) first or second derivative or both, and an integral
controller one in which the corrective network gives the integral of the
error signal. Brown designates a servo system as Type 1, 2, or 3,
depending on whether it contains a proportional, derivative, or integral
controller, respectively. Thus the type of corrective network present
iy the customary basis on which the controller and the total system are
classified and named.
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9.5. Interrelations among the Transfer Functions of a Servo System.
For mathematical representation of a servo system, three different forms
of transfer function have been found useful: the feedback transfer func-
tion 6,(s)/E(s), the output transfer function 6.(s)/8:i(s), and the error
transfer function E(s)/6i(s) (see Fig. 9-3). The ratios given in each
case constitute the definition of the function. It is easily shown that the
output and error transfer functions can be written in terms of the feed-
back transfer function. These relations are given by Eq<. (12) and
(14), with KG(s) being used to represent 8.(s)/E(s), following the notation
of Hall.

To obtain the error function E(s)/8:(s):
let

0.(s) _
B = K6, (1)

but
E(s) = 6:(s) — 6,(s), S0 0,(s) = 0:(s) — E(s).

Substituting in Eq. (11) for 6,(s),

8:(s) — E(s) _
"—‘W = KG(S)
Solving for E(s)/6:(s),
E(s) 1 '
8) - 1T+ KGGs) (12)

To derive the expression for the output function 8,(s)/8:(s):

6.(s)  0.(s) E(s) 1

65 B 6 - 0O T ke (13)
6.(s) _  KG(s) (14
8:(s) = 1+ KG(s)

9-6. Standard Types of Input Function.—To test a given servo system,
either in concrete physical form or in its symbolic counterpart, it is
necessary to apply an input disturbance 6;(¢) which will represent signals
or disturbances to which the system will be subjected in actual use.
Though the most suitable test functions would seem to be a representive
sampling of those expected to occur in practice, this is frequently not
possible, owing to the varied nature of such signals. It has, therefore,
been customary to use certain standard test signals which provide a basis
for estimating how the system will behave under conditions of actual
use. Following is a list of the chief standard test signals or conditions,
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together with their Laplace transforms. ‘The form of the first three
time functions is illustrated in Fig. 9-4.

Step Displacement (Heaviside Unit
Function):

-0, (20 K b
1 Step displacement
0,‘(8) = —S—
The time function may be repre- /
sented by u(f), following the termi- _|
nology of Gardner and Barnes.! In v t—

the Heaviside calculus, it is represented
by a special symbol meaning unit stey
function.

Step Velocity Input: /\ /\
6() = Nt, >0, AN\

where N is a constant.

Step velocity (ramp function)

N Sinusoidal input
9-(8) =, I'tg. 9-4.—Standard types ol input
' s? function 8;(t).

¢

McColl proposes the term “ramp function” for this input function,
following a suggestion of Darrow.?

Sinusoidal Inpul:
6:(t) = cos wt or 6:(t) = sin wt,

6:(s) = and 0:(s) = o ot

T

_s
S2 _l,_ 0.)2,
Initial Error:

0:6) = 0;  6.(8) = &;  E() = 6.) — 6(t) = — 0

This condition is useful in testing the adequacy of a system as a
regulator,® in the narrow sense of maintaining the regulated variable at
a constant level.

DETERMINATION OF SYSTEM PERFORMANCE

Let us suppose that a provisional selection has been made of the
components of a servo system and a block diagram drawn to represent
their arrangement. The first question that must be answered is, How
will the system perform? What are its response properties? Two

1 Gardner and Barnes, Transients in Linear Systems, Vol. I, Wiley, New York,
1942, pp. 100, 115.

2 McColl, Servomechanisms, Van Nostrand, New York, 1945, p. 38.
3 For definition, see Sec. 8-3.
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alternative approaches may be used. In the one, referred to as the
transient approach, the response is obtained in terms of the variation
of output or error as a function of time for various standard input funec-
tions. In the other, designated as the frequency or sinusoidal steady-
state approach, performance is represented in terms of frequency-response
curves of output 8,, relative to error or input, when the system is excited
by sinusoidal test functions. Both approaches will be described here
in some detail, the transient approach in the present chapter and the
frequency approach in the following chapter.

TRANSIENT ANALYSIS

Two principal steps are involved in determination of the response of
a given system by means of the transient method of analysis: setting
up the differential equation representing the system and solution of this
equation to show either the error £ or the output signal 6, as a function
of time. The first step, that of setting up the equation of the system,
is not limited to the transient method of analysis, since it is also a pre-
liminary to the frequency approach. It is in the second step, in the solu-
tion of this equation, that one is dealing specifically with the transient
method of analysis. It obtains its name from the fact that the complete
solution of the differential equation of the system exhibits the character-
istics of the transient part of the solution as well as the steady-state part.

9-7. Setting Up the Differential Equation.—The bulk of servo theory
is based on the assumption that the system being analyzed is linear,
more specifically, that it is one which can be represented by a linear
differential equation with constant coeflicients.? A brief discussion of
the limitations involved in this assumption and of the status of nonlinear
theory is given in Sec. 11-11. The procedure for setting up the differ-
ential equation representing a servo system is therefore no different in
nature from that used in writing the equations for any linear system, such
as those of electric circuit theory. From the known structure of the
system and the physical laws governing the phenomena in different parts,
a set of equations is written for different functional units. By appro-
priate operations, these equations are finally, in the case of a system of
one degree of freedom, reduced to a single differential equation containing
two functions, beside the independent variable time. In the case of
servo systems, these two functions will be the input signal 6;() and
either the error E(f) or the output signal 8,(¢), depending on which is of
more practical interest. The error E(f) will usually be of greater interest,
since determination of this function will indicate the extent to which

1 Our subsequent reference to linear systems will be to linear systems in this
DAITOW Sense.
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the servo system deviates from an ideal system. In an ideal system
E(t) will always be zero.

As a substitute for the procedure summarized above, an alternative
procedure involves application of the transfer function concept. In the
case of a complex system, it is simpler algebraically and gives one a
clearer perspective on the sequence of operations required for obtain-
ing the final differential equation of the system. The procedure consists
of the following steps: (1) drawing the block diagram of the system with
the various units connected in cascade, (2) determining the transfer
function of each of the units represented in the block diagram in the way
already described in Sec. 9-3, (3) combining these component transfer
functions by multiplication to give the feedback transfer function
6.(s)/E(s), and (4) deriving the error transfer function E(s)/8:(s) by
means of Eq. (12). If desired, this error equation can easily be rewritten
in terms of derivatives to show its identity with the system differential
equation derived by the more conventional procedures. The foregoing
procedure may be illustrated by means of the following example of a
proportional servo system.

Step 1. Block Diagram of the System.—For our example the block diagram is
given by Fig. 9-3. It shows three units: the error detector or error-measuring
means; the controller, comprising here amplifier and motor; and the output
maember or load.

Step 2. Determining Transfer Functions of Components.—First write the
equations of the three units. These are given by Egs. (15) to (17).

6:(t) — 6,(t) = E(t) (15)

for the error measuring means,

To(t) = koE(t) (16)
for the proportional controller, and
a4, df,
Joagp + g =T 17

for the controlled member, in this case the load driven by motor torque, where
ko == the proportionality constant of controller, in pound-feet per radian error,
J = the inertia of load, slug-ft?, in and
f = the viscous friction of the load, in 1b-ft per radian per sec.
The remaining symbols have the meanings given in Sec. 9-4.
Equation (16) states that the torque provided by the controller is proportional
to the error. For a more complex controller, this equation will be a differential
equation or contain an integral term. Equation (17) states that the torque
applied to the load is balanced by the opposing torques due to acceleration plus
that due to viscous friction. One next transforms each equation of interest to
operational form and solves for the ratio of output to input. In the present
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instance, since we wish initially to obtain the feedback transfer function
8.(s)/E(s), we need consider only Egs. (16) and (17).
From Egq. (16) we thus obtain
T.(s)
E(s)

= ko. (18)

From Eq. (17) we obtain, by application of the Laplace transformation and a
little algebra,
Js26,(s) + fsb.(s) = T.(s), 19
0.(s) 1
Ts) = T F (20)
Step 3. Combination of Component Transfer Functions.—Combining transfer
functions given by Eqgs. (20) and (18), we obfain

8.(s) Te(s) 1 k
T.(s) B{s) ~ Jst + fs°
and therefore
8.(s) ko
T EG) T TsE A4 fs

21

This is the feedback transfer function.
Step 4. Derivation of Error Transfer Function.—Application of Eq. (12) gives

E(s) 1 1
8:(s) ~ 1+ KG(s) ~ . b (22)
+ Jsr + fs
Jst + fs
T IS fs + ko (224)
_ st
S P S A (23)

This equation gives, in operational form, the error as a function of the parameters
of the system, the complex variable s, and the input function 6:(s).
Formulated in terms of derivatives, this equation can he written as

a*E(t) dE(?) d*; (t) db; (t)

a ta
where E and 8; are functions of t. This form is derived from Eq. (23) by multi-
plying both sides of the equation by the characteristic function, in order to relate
the operational expression to the appropriate variable, and then replacing the
terms in operational symbols by the appropriate differential expressions. The
procedure is merely the reverse of that followed in obtaining the transfer function
from the differential equation. Thus, from Eq. (23) we obtain

(Js* + Js + ko)E(s) = (Js* + fs)8i(s),
TsE(s) + fsE(s) + kaB(s) = Js%0u(s) + fobi(s), (25)

d'*’E(t) +fdlf“(t) + ko (t) = Jd’g.(t) +fd6;t(t)'

J

+ koE(t) = J -

(24)
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In most cases, one will not wish to rewrite Eq. (23) in terms of derivatives,
since it will itself be the starting point for the subsequent steps. If, however, the
problem specifies initial conditions for E(t) and 6.(t) and their first derivatives
that are different from zero, then it is probably clearest to prepare for the inser-
tion of these initial conditions by first writing the equation in the form of a
differential equation in ¢t [Eq. (24)] and then applying the rules for the Laplace
transformation of the derivative terms to each term in turn. These rules provide
for the insertion of initial conditions (see Table 9-1a).

9-8. Complete Solution of the Differential Equation of the System.—-
Solution of the system equation, as given by either Eq. (23) or (24),
means finding an equation that gives the error £ as a function of time ¢.
A plot of this equation provides a graphical picture of the response, which
may be compared with a plot of the required performance. Finding
such a solution, however, depends on first substituting some function
for 6;(t) or 6:(s), either one of the standard input functions described in
Sec. 9:6, or a function representing some arbitrary input of practical
interest. The solution therefore will show what the error response is to
this particular input function 6;(t). The points of special interest in
the present section may be conveniently classified under the following
topics: (1) the sequence of steps involved in obtaining a solution, (2)
relational and nondimensional parameters, (3) nondimensional response
curves, and (4) procedures for handling more complex problems. Under
the first three topics, discussion will be limited to the simplest possible
system—a proportional servo—since the fundamental techniques are
involved here as well as in the more complex systems and can thus be
made to stand out more clearly. Under the fourth topic, the nature of
the supplementary procedures introduced to take care of more complex
problems will be considered.

Steps Involved in Obtaining a Solution.—As is well known, a number
of alternative procedures are available for finding a solution for differen-
tial equations with constant coefficients. Among these are the tradi-
tional methods described in any text on differential equations and the
operational methods, such as the operational calculus of Heaviside or the
related procedures involving the Laplace or Fourier transformations.
The present exposition employs the Laplace transformation, as already
indicated. Except for differences pointed out in Sec. 9-2, similar steps
would be required if one of the other operational methods were employed.
Assuming that we start with a differential equation representing the
system, three chief steps are required in obtaining a solution: (1) trans-
formation of the differential equation to operational form, (2) algebraic
manipulation of the operational equation in order to change it to a form
suitable for application of the inverse transformation, and (3) application
of the inverse Laplace transformation to yield the required variable as a
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function of time. These three steps are illustrated below for Eq. (24),
representing a proportional servo system.

1. Transformation of differential equation. Application of the
Laplace transformation to Eq. (24) yields Eq. (26). Initial conditions
[i.e. the value of E(¢) and 6;(f) and their first derivatives at ¢ = 0] are
here assumed equal to zero, in order to simplify the algebra. When any
of these initial conditions are different from zero, they may easily be
inserted in the equation by means of the formal rules for application
of the Laplace transformation to derivatives (see Table 9-1a). Equa-
tion (26) may now be manipulated like any ordinary algebraic equation.

JSPE(s) + fsE(s) + koE(s) = Js%0:(s) + fs0:(s). (26)

2. Manipulation of operational equation. Our purpose is next to
write Eq. (26) in a form that will permit us to obtain the error E as a
function of time when the inverse Laplace transformation is applied.
Two steps are therefore necessary: solving Eq. (26) for the variable or
function of interest E(s) and recasting the resultant equation in a form
to permit the inverse transformation to be evaluated. Let us first solve
for the required variable £(s). From Eq. (26) we obtain

Js* + fs
E(S) = m 0;‘(8)' (27)
It will be noted that this equation is the same as Eq. (23), obtained
initially by the transfer function procedure of setting up the equation
of the system. If we now substitute some specific function for 6;(s), we
will be in a position to attempt the inverse transformation. Let us
assume that the input function 6;(¢) is a step function. Therefore 6;(s)
equals 1/s, and :

_ Us+Ns 1

PO = o et ks @)
__Js+f _ P(s)
RS Y 0! (29)

To determine an appropriate form for Eq. (29) prior to application
of the inverse transformation it is expedient to consider the fundamental
forms that appear under F(s) in a table of transform pairs. Inspection
of Table 9-1b shows that the form of the time function corresponding to
a given function of s, such as E(s) of Eq. {(29), depends on the poles of
the function. These are determined, it will be recalled, by determining
the roots of the equation Q(s) = 0. This equation is known as the
characteristic equation, and the polynomial Q(s) as the characteristic
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function.? The roots may be more clearly displayed by writing @(s) as a
product of factors containing the roots.

P
(s + s1)(s + s2)

As a final step Eq. (30) may be written as a sum of partial fractions.

P(s) __4 n B
s+ s)(s+8) s+8 8+ 8

where 4 and B are constants and —s, and —s, are the roots of Q(s) = 0.
Several methods are available for evaluating the constants, or coefficients,
A and B. One basic method, the method of undetermined coefficients,
will be found described in any standard algebra..

A second method, corresponding to a procedure commonly used for
evaluating the residues at the poles of a complex rational function, is
almost apparent by inspection of Eq. (31). To determine 4, we may
multiply both sides of the equation by (s + s;). This new equation
will be true for all values of s, hence for s = —s;, which may be substi-
tuted for s throughout.

E(s) = (30)

@31)

P(s) _ B(~s; + 81)
(s + 82)]a=—u =4+ —~$1 + 82 (32)

=4 4 0.

Thus terms on the right other than A are eliminated and the value of 4
can be found from the left-hand side of the equation. A like procedure
can be used for evaluating the other constant B. Analogous though
slightly modified methods are applicable when any one of the denomina-
tors on the right-hand side of the equation contains higher degree terms
in 5, such as s* + w.? The same procedure may be followed regardless
of the number of factors, and therefore constants, involved.

Since in our exarple the characteristic function is of second degree,
the roots obtained by setting it equal to zero are readily found.

Js 4+ fs + ko = 0;
2 ko
8=“‘2{7i\/<%) T (33)

1t will be found convenient later if we now write the above roots as com-
plex numbers, by factoring out j = \/ —1 from the radical.

= deii- () o

1 See Gardner and Barnes, op. €it., p. 132.

*For a detailed description of procedures, see Gardner and Barnes, op. cit., pp.
153-164.
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3. Application of inverse Laplace transformation. We are now in a
position to determine the different types of time response that may occur
IL the case of an error function such as Eq. (29) with a second-degree
characteristic equation. Consideration of Eq. (34), giving the roots of
a quadratic, together with our table of transform pairs will show what
kinds of time response are possibie and the reason why any given one
occurs. We shall find that three types of time response may occur:
(a) an undamped sinusoidal oscillation, (b) a damped oscillation, and
(c) a nonoscillatory damped exponential. (These responses are illus-
trated in Fig. 9-5 for both the error and the output response.) The type

Output response: 8,(t)=6,(t) — EXt}

+1 it e it when miey’ Rkt —_ - —_—t—_————
|
0 P
0 1t o | i i Pt 0 -1 0 —t
BEE
b
IR
Error response: E(t)=6,(t) — 6,(t)
+1 Ll
N AN N I~
0 e
VAV
_l y

Roots conjugate imaginary  Roots conjugate complex  Roots real and equal Roots real and unequal
F1G. 9-5.—Types of response curves corresponding to different solutions of a second-degrec
characteristic equation.
of response occurring will depend on the character of the roots of our quad-
ratic. These in turn will depend on the value of f/2J relative to Vko/J
[see Eq. (34)]. When f and therefore f/2J = 0, the two roots of the
quadratic are conjugate imaginaries and the time response is an undamped
oscillation. When f/2J is greater than zero but less than \/ko/J, the
roots are conjugate complex and the time response is a damped oscilla-
tion. When f/2J = 1/ko/J, the roots are real and equal and the error
time response is a decreasing exponential. Finally, when f/2J > V'ko/J,
the two roots are real and unequal and the time response is the sum of
two exponentials. These results are illustrated in Fig. 9-5. The curve
corresponding to f/2J = \/ko/J is designated as critically damped,
since it represents the smallest value of f/2J relative to V'ko/J at which
oscillations will not occur. Curves corresponding to still greater values
of f/2J are designated as overdamped. These results may be readily
obtained by substituting different values of f/2J into Eq. (34) and deter-
mining the nature of the roots resulting. Then by examination of our
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table of transform pairs the nature of the time response corresponding
to different types of roots may be determined. For purposes of illus-
tration this procedure is carried out in two of the special cases.

1. Undamped Oscillations. Whenf/2J = 0,s = +j\/'ko/J. There
are thus two conjugate imaginary roots, representing two conjugate poles
on the imaginary axis. Transform pair (¢) of Table 9-1b shows that the
corresponding time function is an undamped oscillation of frequency
v'ko/J. This frequency is called the undamped natural frequency and
represented by the symbol w,.

If we wish to evaluate formally the inverse transform of E(s), we
find, substituting f = 0 in Eq. (29),

Js s s

Jsziko=sz+?=sz+wz'

E(s) = (35)

Then upon applying transform pair (c), there results the inverse Laplace
transform
E(t) = cos wat. (36)

This equation gives the complete solution of our differential equation
under the condition specified.

2. Damped oscillations. We again start with the error equation
for a step-function input, given by Eq. (29) and repeated here:
!

Js + f _ $+ J
E(s) = Js2 ¥ fs + ko = . f ko. (29)
st + J s+ T

The roots of the characteristic equation are

ot i e (LY
$= oy iNT T\Y
= —a t juw

Then Eq. (29) can be written

8+ 2« _ s 4 2« ]
8+ a—juis + a+ jw) s+ a)2 4+ w?

Applying transform pair 1.303, page 342, Gardner and Barnes,

E(s) =

14
@) = (1 + z_:) e sin (wt + @)
(37)
¢ = tan™! .
a
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Relational and Nondimensional Parameters.—The outline given of the
steps involved in solving the system equation was limited for reasons
of concreteness to the dimensional parameters characterizing specific
physical components. Examples of such parameters are the moment of
inertia J, measured in slug ft? (or gm-cm?), the viscous friction f, meas-
ured in 1b-ft (or dyne-cm) per radian per sec and the stiffness or propor-
tionality constant ko, measured in lb-ft (or dyne-cm) per radian error.
It has been found of value in many problems to employ instead what
might be called relational parameters, i.e., parameters that depend on
relations or ratios among the dimensional parameters rather than on
any one physical property. In the present section a few of the more
important of these parameters will be considered and an attempt made
to show how they arise naturally out of the different types of solution
considered above. In some instances these parameters are nondimen-
sional, a feature that contributes greatly to their value.! In other
instances, though not in themselves nondimensional, they provide a
basis for easily forming new nondimensional parameters through com-
bination with other parameters or variables having the inverse dimensions.

Let us consider, first, a pair of parameters that are defined in relation
to the amount of damping in a system, namely, the damping ratio ¢
and the undamped natural angular frequency w.. It was found possible
in the previous section to arrange the different types of time response in
a series corresponding to the magnitude of f/2J relative to \/ko/J. As
f/2J increases from zero to values greater than /ko/J, the time response
was found to change progressively from an oscillation of constant ampli-
tude to damped oscillations that are damped out more and more rapidly
and finally to nonoscillatory responses compounded of exponentials.
If, now, we wish to indicate the position in such a series at which the
response of a given system will lie, it seems natural to select as a reference
point one that will separate the oscillatory from the nonoscillatory
responses. Such a reference point is provided by the response that occurs
when the roots of the characteristic equation are real and equal. It is
known as the critically damped response and will oceur when

S ke

2] ~NJ
For smaller values of f/2J oscillatory responses ocecur; for greater values,
nonoscillatory responses. We may refer to f as the damping parameter
of the system, since with all other parameters constant, variation of it
alone will provide the series of responses mentioned above. Similarly,
fe may be used to designate the value of f for critical damping. Then ¢

' A clear discussion of nondimensional equations may be found in 1. P. Campbell,
““Theory of Automatic Control Systems,” Industrial Aviation, September 1945, p. 62-
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is designated as the damping ratio and is defined as the ratio f/f., or the
ratio of actual damping to critical damping. It is convenient to be able
to express { in terms of the whole set of system parameters. As a pre-
liminary step, f. is written in terms of system parameters. When f = f,,

i.e., for eritical damping,
Je ko
2J g’

therefore
fc =2 '\//m
and (38)
(i S
fo 27/kod

The quantity ¢ now provides a convenient index of the position of a
given response in the series of possible responses. For a critically
damped system, { = 1, as is apparent from Eq. (38). For ¢ < 1, osecil-
latory or underdamped responses occur; for ¢ > 1, nonoscillatory or
overdamped responses oceur.

The related parameter w,, the undamped angular frequency, has
already been defined as equal to v/ko/J. It is the value of the frequency
w when f and therefore { equal zero.

These new parameters ¢ and w, may now be substituted for the
‘“physical parameters’’ J, f, and ko, appearing in any of the equations
occurring in our analysis of the proportional servomechanism. Thus in
place of Eq. (27), the error equation can be written as

8% 4+ 2fw.s X .
B 0 @)

From this point, we might proceed exactly as before and find the various
possible time solutions in terms of { and w. for any given input function.
This is in fact the more usual procedure in expositions already publizhed.!
If, however, the solutions have already been obtained in terms of J, f,
and ko, it may be simpler to use them as the point at which the substi-
tutions are made.? The equations for the different types of response
to step functions may be written as in the following equations:3

E(s) =

1 G. 8. Brown, “Transient Behavior and Design of Servomechanisms,” NDRC
Sec. D-2 Report, November 1940; H. Harris, “ The Analysis and Design of Servo-
mechanisms,”” NDRC Report, 1942; C. S. Draper and G. V. Schliestett, ‘‘General
Principles of Instrument Analysis,” Instruments, 12, 137-142, 1939.

2In making the substitutions in any equation, it will be found convenient to
perform such algebraic operations as will lead to coefficients such as f/J and k,/J and
to substitute for these ratios terms containing »? and ¢. Thus, it is readily shown
from the definitions of w. and ¢ that ko/J = w? and f/J = 2tw..

3 Cf. Brown, op. cit., Table IV.
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E(t) = 6, cos wat for ¢ =0, (40)
e~ {wnt
E(t) = 6;———sin (\v/1 — {Fwut + ¢) for0 ¢ <1, (41
Vi—¢®
= 6;(1 4+ wal)e—“rt for ¢ = (42)

= @0~ N’(cosh\/ — 1wt + lsmh\/g”—lw,.>

for¢ > 1, (43)

where 6, is the magnitude of step function ;(t) and ¢ = tan—!' /1 — ¢¥/¢.

It will be shown in the following subsection how equations such as
these provide a basis for construction of sets of generalized response
curves that may be used to simplify the determination of system
response.

A second pair of relational parameters frequently useful is k,, the
velocity error censtant of the system, and 7' or 7, the so-called time con-
stant or characteristic time of some portion of the system. 7T is fre-
quently written with a subscript to indicate the portion of the system
represented when such time constants appear in various parts of the
system. Thus 7, stands for the motor time constant. (The motor
time constant is the time required for the motor to reach 63.3 per cent
of its final speed after the application of a step input voltage.) In the
case of the proportional servomechanism, &, is defined as ko,/f and has
the dimension of 1/time, and 7 is defined as J/f and has the dimension
of time.! One way of indicating the origin of these parameters is to
start with the feedback transfer function as given by Eq. (21) and divide
the numerator and denominator by f. Substitution of k, and 7 as
defined above will now permit elimination of the three original physical
parameters.

¢
V-

k
00(8) _ ko _ 7 _ kv )
E(s) Js*+js J T Tst ¥ s (44
7 st + s

If this transfer function is used in determination of types of error response,
the response equations will, of course, be given in terms of k, and 7'
instead of ko, J and f, or w, and {. The parameters to be preferred in a
given problem will naturally depend on the nature of the application.
Thus if one is interested in the magnitude of the velocity lag error it is
convenient to use the velocity error constant &, as a parameter, since
E, = N/k,, where E, is the velocity lag error and N is the slope of the
input ramp function.?

1 The symbol T for time constant should not be confused with 7.(2), used for torquc

output of controller.
2 For derivation of this equation see Sec. 9-9.
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Nondimensional Response Curves.—The solution of a system equation
in terms of relational parameters which can readily be converted into
nondimensional parameters leads directly to the construction of non-
dimensional graphs of the various possible forms of response. This
approach has been developed in this country by Draper and his students
in the analysis of instruments and extended to the analysis of servo-
mechanisms by Brown and his students and others. The procedure
is of great value in that the same set of response curves may be used to
represent systems that, although equivalent in organization and hence
in the form of the system equations, may differ widely in the values of
the physical parameters. For a given type of system, one may refer to
the appropriate set of curves and determine the form of the response and
its duration and magnitude in terms of nondimensional variables. The
nondimensional magnitudes and durations may then be converted into
dimensional terms, and the actual characteristics of the response deter-
mined. The curves may also be used in the inverse problem of deter-
mining the design parameters required for a system to meet given
performance specifications. For a detailed account of this approach, the
papers by Draper, Brown, and their co-workers may be consulted.!

The construction and use of nondimensional response curves may be
illustrated here for the proportional servo system discussed above. The
equations for the error response to a step function are given by Egs.
(40) through (43), with E the dependent variable, ¢ the independent
variable, and { and w, the parameters. If both sides of the equations
are divided by 6;, the magnitude of the input step function, and w,f is
taken as the independent variable, then the equations will be nondimen-
sional. By way of illustration, Eq. (45) shows the result of carrying out
these operations on Eq. (41).

—¢ (wnt)
B = Tt VT =g ) + 4] (45)

for0 £ ¢ < 1.

t . 8. Draper and G. V. Schliestett, ‘“General Principles of Instrument Analysis,”
Instruments, 1%, 137-142 (1939); C. S. Draper and G. P. Bentley, “Design Factors
Controlling the Dynamie Performance of Instruments,” Trans. ASME, 62, No. 5,
421-432, July 1949; G. S. Brown, op. ¢it., pp. 1-47. References to the German
literature dealing with the use of dimensionjess ratios may be found in E. S. Smith,
Automatic Control Engineering, McGraw-Hill, 1943, pp. 343ff. Material on the
theoretical background in the field of dimensional and nondimensional analysis may
be found in P. W. Bridgman, Dimensional Analysis, Yale University Press, New
Haven, 1931, Recent expository accounts that may also prove useful are those of
H. Sohon, Engineering Mathematics, Chap. 3, “Dimensional Analysis,” Van Nostrand,
New York, 1944; and E. R. Van Driest, “On Dimensional Analysis and the Presenta-
tion of Data in Fluid-flow Problems,” Convention ASME, Paper 45, Nov. 26, 1945.
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The independent variable w.t is dimensionless, for w, has the dimen-
sions of 1/sec and ¢ the dimensions of sec.  E(#)/6;1is dimensionless, since it
is the ratio of two quantities with the same dimensions. Equation (45)
may now be plotted by the procedure used for plotting any equation.
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Fi1g. 9-6.—Dimensionless transient error curves of a servomechanism with a Type 1
controller when subjected to a suddenly applied input angle 8. (Courtesy of G. S. Brown,
Transient Behavior and Design of Servomechanisms, Massachusetts Institute of Technology,
1941 and 1943.)

For any particular value of the remaining parameter ¢, wnt is given each
of a series of numerical values, 0, 1, 2 etc., and the corresponding values
of E(t)/6; calculated. The procedure is then repeated for another value
of ¢ in the allowable range, and so on. The resulting plots of Eqs. (41)
to (43) for different values of ¢ are given in Fig. 9-6.

Equation (40) represents a limiting case of Eq. (41), which occurs
when ¢ = 0, and is an oscillation of constant amplitude or zero decrement.
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The way that such nondimensional curves may be used to determine
the response of a system whose physical parameters are known may be
illustrated by the following simple example. Suppose in a proportional
servomechanism that J = 2 slug-ft?, f = 12 lb-ft/radian-per-sec and
ko = 50 lb-ft/radian and that the magnitude of the input step function
is 10°. Suppose one wishes to plot the error response curve as a function
of time and to determine the interval that will elapse before the error
is less than 0.4°. The first step is to determine the magnitude of the
relational parameters.

/ 12_ _os;
2/ Jko 2\/ (50) ’

\/—k—O \/—56 =5 radians per sec.

Turning to Fig. 9-6, it is apparent that the form of the response curve is
given by the curve for { = 0.6. To read durations in seconds, we need
to find ¢ from waf, as indicated by Eq. (46).

¢ =

wnl _ wal
= - =B sec. (46)

Thus the nondimensional abscissa values of Fig. 9-6 need only be divided
by 5 to give us the time coordinate in seconds. Similarly, the ordinate
values can be multiplied by 8; = 10° to give the error in degrees. From
this scale, the time corresponding to an error of 0.4° or less can be read
off. Alternatively, the error specification can be formulated in nondi-
mensional terms as a required error of less than E/6; = 0.4°/10° or 4 per
cent. The nondimensional curve shows that the corresponding value of
wat 18 5.5. In time units this will correspond to 5.5/5, or 1.1 sec.

In the above example, the relevant nondimensional curves (Fig. 9-6)!
were those showing the error response resulting from an input step func-
tion. Figure 9-7% shows the family of nondimensional response curves
resulting from an input ramp function. In this curve the ordinate is
given in terms of E(f)/E,, where E,, signifies the steady-state error, which
will here be a velocity lag. The abscissa is again given in terms of the
dimensionless product, w.f. Dimensionless curves for more complex
systems, such as the Type 2 (derivative controller) and Type 3 (integral
controller) may be found in Brown’s report.

Treatment of More Complex Problems.—In the sections above, an
outline has been given of the formal procedures involved in solving the
differential equation of a servo system. An extremely simple system
operating under the influence of a simple set of external agencies was

' From Brown, op. cit., p. 44.
? [bid., p. 13.
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chosen for purposes of illustration. It will be of interest now to determine
how the basic scheme outlined is modified as the external conditions
and the system become somewhat more complex. Possible changes in
the external agencies consist in (1) variation in the form of the input
forcing function and (2) application of accessory disturbances at other
points of the system. Possible changes in the system itself consist in
{1) changes in the nature of the controller or corrective network and
(2) an increase in the number of energy-storage units in the output
member or other parts of the system. It will be found that the same
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Fig. 9-7.—Dimensionless transient error curves for a servomechanism with a Type 1 con-
troller when subjected to a suddenly applied input velocity. (Courtesy of G. 8. Brown.)

formal procedure already described for determination of system response
is applicable to these more complex problems. Complicating factors
are incorporated in the treatment by properly representing the given
condition in the differential or operational equations initially set up.
After one has solved for the function of interest, such as E(s), it will be
found that the expression on the right-hand side of the equation will
merely be somewhat more elaborate than in our previous example and
may contain additional functions representing external disturbances
whose form must be known. But one may proceed as before to recast
the equation in a way to facilitate evaluation of the inverse Laplace
transformation and finally carry out the transformation. Let us now
consider more specifically how the changes just mentioned will be repre-
sented in the equations.

Procedures for dealing with different iypes of input function can be
disposed of quite easily. A convenient starting point for the discussion
is the error transfer function given in general form by Eq. (47) and for
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the proportional servo system by Eq. (22a). Since KG(s) is invariably

a rational function, it may be written as P(s)/Q(s). Then
E(s) _ 1 _ 1 Q) (a7

b(s) ~ 1+ KG(s) ~ | P TP + QY :

te®

and

L

i
]
Q(s) ‘
s <
E® = oy + o *0 w
In our previous example 6;(s) was equal to 1/s, which was substituted folf

8:(s). Whatever form 6:(s) takes, it may be substituted at this point foil }
8:(s), and any factors in its denominator that are identical with factors oft )
Q(s) may be cancelled out. The resultant expression is'then treated in, |
the manner already described until the inverse transform of #£(s) has: ;

been obtained. Where initial conditions other than zero must be inserted

v

e

To (s)

f@
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6(5)
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© Tg (s) @

SRR B §
\ MRS
Frc. 9-8.—Block diagram of a servo system involving an output disturbance 7'o(s)i; !} ) o2l

the procedure previously discussed (page 239) is applicable regardless of
the nature of the input function.

)
3
4

By an accessory disturbance is meant any forcing function applied to
the system at points other than at the input that may tend to introduce
a servo error or interfere with its elimination. Thus in Fig. 9-8, a torque
T,(t) acting on the output member will tend to alter 8, and hence produce
an error. Such disturbances may be handled by incorporating them
in the original differential or operational equation set up to represent
the system. The final error function will then contain 7',(s) or an equiva-
lent symbol in addition to 6;(s). Hence, a preliminary to the manip-
ulation of E(s) and evaluation of its inverse transform will be the
substitution of a specific function for T'.(s) as well as for 8;(s)

By way of illustration, let us derive a general expression for the error
in a servo system acted on by a disturbing torque in addition to 8;(¢).
The block diagram is given by Fig. 9-8, with the various functions written
as functions of s.

The transfer function of the controller member is represented by

C(s) and of the output or controlled member by H(s). For obtaining
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6,(s) in terms of E(s), the equations of interest are those characterizing
units between E(s) and 0,(s).

I

T.(s)
8,(s)
where T,.(s) is the Laplace transform of 7’.(¢) and 7.(f) represents the

total torque applied to the output member. Since 7'.(¢f) will equal the
sum of the controller torque T'.(¢) and the disturbing torque! 7',(1),

Ta(s) = T(s) + T.(s).

C(8)E(s)
H(s)Tals) (49)

Therefore,

8.(s) = H()[T(s) + T(s)]
H(s)[C(s)E(s) 4+ T.u(s)], (50)
8.(s) = C(s)H(s) E(s) + H(s)T.(s).

This equation gives the output response in terms of the error function
E(s) and the torque disturbance 7.(s), in addition to system transfer
functions. To obtain an equation comparable to Eq. (23) of our previous
example we want to solve for E(s) and to eliminate 6,(s). This may be
done by substituting 8;(s) — E(s) for 8,(s). The validity of the substitu-
tion follows from Eq. (51), which may be assumed for the error detector.
E@) = 0.(0) — 6.(1);
therefore (51)
0,(8) = 8:(s) — E(s).

Upon making the substitution in Eq. (50) and solving for E(s), we obtain

1 1
TFCwH® ™ ~ TFomue HOTO) (52)

— H(s)T.(s)].

E(s) =

1
= {FCOHEE [6:(s)

This equation, written in terms of operators, is designated by Brown
and Hall? as the basic equation for a closed-cycle system such as shown
in Fig. 9-8. The equation shows the error as a function of the transfer
functions of the different units and the excitation functions #;(s) and
T.(s). If the system transfer functions C(s) and H(s) are known and
in addition the form of the excitation functions 6;(s) and T.(s), then our
equation will contain only known parameters in addition to terms in s.

! Some guthors take the sign preceding 7'.(s) as negative and thus obtain a cor-
responding reversal of sign in the final equation.

* S8ee Brown and Hall, 0p. cit., p. 3. The symbols used here closely follow those of
Brown and Hall. The chief difference lies in the fact that these authors treat p as an

operator and thus write equations in which transfer functions appear as functions of p
and excitation functions as functions of ¢.
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It may therefore be recast in partial fraction form, and the inverse
Laplace transformation applied. The first term of Eq. (52) shows in
operational form the part of the error response due to the input function
6;(s), and the second term the part due to the accessory disturbance
T.(s). If T,(s) is assumed to be zero, the second term vanishes and we
are left with the basic error equation of a servo system not subject to
accessory disturbances.

Finally, in order that we may see more clearly the relation of Eq. (52)
to that previously obtained for a proportional servo system, Eq. (23), let
us substitute for C(s) and H(s) the transfer functions used in our pre-
vious example. There, C(s) = ko and H(s) = 1/(Js? + fs). Therefore,

_ 1 P 1 T.(s)
E(s) = L+ . 9:(3) L+ . Js? +fs
Js* + fs Js? 4+ fs
L 5 L YA S
e e Ol ey ey SO (53)
If, as before, 6;(¢) is a step funection, then
E(s) = et : T4(s). (54)

Jse ¥ fs+ ko JE+[fs + ko

Comparison of Eq. (53) with Eq. (23) shows them to be identical except
for the second term in Eq. (53), due to the disturbing torque 7',(s). When
a known function is substituted for T',(s), determination of E(¢) can pro-
ceed as described.

So much for the effect of more complex excitation conditions on our
problem. Let us now consider the chief ways in which the system itself
may increase in complexity. Two types of possible variation have been
mentioned: variations in the type of controller and variations in the
type and number of energy storage units. It should be apparent that
changes of either type will be reflected in the nature of the transfer func-
tions of various units of the system and hence in the over-all transfer
function.

Let us consider first the more common variations that may oeccur in
the controller. In the sections dealing with correction of servo-system
performance in Chap. 11, development of particular types of controller
will be reviewed. Here it will suffice to consider the nature of the transfer
functions of two important controller types, the integral and derivative
error controllers, and to indicate how their incorporation in a system
modifies the error equation. Finally, at the end of this section, the
nature and effect of energy storage elements and procedures for solution
of the higher-order equations that occur will be reviewed. In Sec. 118,
we shall find that the integral type of controller has been developed as a
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means for compensating for the steady-state errors of a servo system.
The transfer function of such a controller is given by Eq. (55).

_Ts) n _ no|_
C(s) = E(s) —k0+g—ko[l+k—os] =

kos + n, (55)
B

where k, and n are constants that indicate the amount of proportional

and integral control, respectively. To determine the effect of an integral

controller on the error equation of the system, let us start with the basic

error equation, as given by Eq. (52). For purposes of simplification,

let it be assumed that the disturbing torque T,(s) = 0 and that

1
H(s) TsT T Js
as in our earlier illustrations. Then
Js? 4+ fs

E(s) = 0:(s). (56)

Js? 4+ fs + C(s)

Substituting for C(s) as given by Eq. (55), there results
Js* + is T 6:(s)

Js? + fs + i S n

_ (Js 4+ f)s? _

T IS+ st ks +n 6:(s).

The incorporation of an integral controller in the system raises the
degree of the characteristic equation by 1. The error transfer function
is now of the third order rather than of the second order, as in the case
of a proportional or Type 1 servo system.

Another important type of controller is the dertvative error controller,
to be considered in more detail in Sec. 11-4. It is important as a device
either for increasing the stability of a system or for reduction of its
transient error. The transfer function of an ideal derivative controller,
involving proportional, first derivative, and second derivative control is
given by

E(s) =

(57)

C(s) = ) = o+ ks + hast. (58)

Its effect on the error equation of a system is indicated by substituting
this funetion for C(s) in Eq. (56).

Js? 4 fs
Jst 4 fs + (ko + k15 + kosd)
_ Js? + fs
T F kst (f A kDs Ak

E(s) =

0,‘(8)

0:(s). (59)
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The incorporation of this type of controller does not alter the degree of
the characteristic equation at all but merely changes the value of the
coefficients. Solution of the error equation may therefore be carried out
by the same procedures as already described.

Let us consider now the effect of components that are commonly
referred to as energy-storage units, or units responsible for response lags
in the system. The effect of such units is to add factors of the form
1/(As 4 B) or 1/s{As + B) to the feedback transfer function.

An example of an energy storage unit is the field control circuit of a d-¢ motor,
in which inductance and resistance in series may sometimes be encountered. Let
us suppose that the instantaneous motor torque’ is proportional to the instantane-
ous field current, the proportionality constant being represented by k.. The
equations of the motor can then be written

T(t) = knt; (1),

e = 1580 4 ki,

i

(60)

where e(t) is the applied voltage, i,(t) the field current, and 7.(t) the resultant
torque. Written as transfer functions, Eq. (60) becomes

I/(Sz _ 1

e(s) Ls+ R

T.(s)

Lsy =™ (61)
S0

T.(s) km

o) ~Ls + R (62)

Another example is provided by the smoothing network of Fig. 9-9a. Its
differential equation is

Ei(t),

i

Rilt) + Cl, f i) dt
SO

(R + C}As) 1(s) = ei(s),

where ¢,(t) is the applied voltage and i(f) the current.
1(s) 1 _ Cs

1 It shoutd be borne in mind that the instantaneous torque referred to here can be
measured directly at motor output only when the motor velocity has been brought to
zero by an opposing torque. At motor speeds greater than zero the measured torque
will decrease as speed increases. This decrease in torque, as shown in the familiar
torque-speed curves, can, however, be regarded as due to a counter torque associated
with viscous friction. For discussion of this problem, see Sec. 13-2.
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But
eo(t) = 51 / 1dl,
therefore
eofs) 1
I(s) Cs
Then,
e(s)  e(s) I(s) Cs 1 1 63
e(s) ~ I(s)ei(s) ~ RCs +1Cs ~ RCs 41 (63)

The transfer functions of physical networks incorporated as part of derivative
or integral controllers are likely to contain factors indicative of such energy
storage elements in addition to the function that one desires to synthesize.

Ca
R 7
—AAAN—1—0 ——AAA———0
R

!

6 (1) i(f)\ C== ol 2
o4 ;{t) R% (t)

() (b)
Fic. 9:9.—(a) ‘‘Smoothing,” or low-pass network; (b) * phase-lead’’ network.

Thus, one common type of network used as part of a derivative controller
{(intended to provide proportional and first derivative terms) is that shown in
Fig. 9-9b. 1Its transfer function is given by

EZ(S) _ Rl 1 + RZC23 . (64)
61(8) - R1 + R’) + Rlecz
R+ R.®

It is thus of the form

es(s) 1+ Tss

als) = BT ETs (65)

where ko, T, T, are constants.
The transfer function for an i¢deal derivative controller is, however, of the form

C(s) = ko(l 4 Ts).

The factor 1/(1 + T:s) in Eq. (65) thus represents the extent to which a passive
network fails to meet the requirements of an ideal derivative controller.

Finally, it will be recalled that the mechanical load of a servo system involving
inertia and viscous friction has a transfer function of this same form and is written

6.(s) _ 1
T.(s) sUTs+
As these examples indicate, factors of the type in question may occur

at various points throughout the servo system. The effect, when several
such factors are present, will be to increase the degree of the character-
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istic equation of the feedback and error transfer functions. An example
is provided by the system represented in the block diagram of Tig. 9-10.
The transfer functions and conversion constants for the various units are
given in the diagram. The feedback transfer function is obtained readily
through multiplication of the component transfer functions.

6,(s) Kok ok _
KGO = 5@ = sus+ nils + B (66)

Hence, the error transfer function is given by
E(s) _ I sUs+NUs+R) )
0:(s) 1+ KG(s) s(Js+ filLs + R) + kpkokn

To proceed with the formal procedure outlined earlier for solution of the
error equation, the expressions in numerator and denominator would be
multiplied out to give polynomials. The term 6.(s) would be transferred
to the right side, and some standard input function such as 1/s or 1/s?

(67)

Error Motor
detector Potentiometer Amplifier Load
6 () E (s o (v e, (3) ) (%) (T, s 1 Y6 ()
L 1 0 P A P TrR K yET
Error Error Amplifier Fieid Motor
in radians in voits voltage current torque

F1a. 9-10.—Block diagram of system containing two energy-storage elements.

substituted for it. The characteristic equation, which would now be of
degree three, would be solved for its roots, and so on. The point of
special interest here is that the characteristic equation would be of degree
three. If more energy storage units were present, the order would be
still higher. As is well known, solution of algebraic equations of degree
three and higher is somewhat more difficult, the degree of difficulty
tending to increase disproportionally with the degree of the equation.
It is the necessity of solving for the roots of such higher-degree algebraic
equations that makes it laborious to carry to completion the transient
solution of the error equation of higher-order functions. The solution
is carried through in exactly the same way already outlined for the
second-order transfer function. To solve the higher-degree equation
for its roots, a number of methods are available such as Graefie’s root-
squaring method, Uardan's mecnod, and synthetic division used in
conjunction with graphical methods. The reader can find these methods
and others described in standard algebraic and engineering texts.!

1 Representative references are: E. Smith, Automatic Control Engineering, McGraw-
Hill, New York, 1944, pp. 246-252; R. S. Burington, Handbook of Mathematical Tables

and Formulas, Handbook Publishers, Sandusky, Ohio, 1941; M. Merriman and R. 8.
Woudward, Higher Mathematics, Wiley, New York, 1886; R. E. Doherty and E. G.
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Where one finds it necessary only occasionally to solve higher-degree
equations, it will probably be found easiest to rely on a comparatively
simple method such as synthetic division rather than to go to the labor
of learning the more complex methods.

At best, however, such solutions are laborious, and it is found that
the transient solutions even when obtained are not so useful for design
purposes as might be expected on the basis of treatment of servo systems
with second-order transfer functions. Attempts have consequently
been made, on the one hand, to develop methods that avoid or reduce
the labor involved in solution of higher-degree algebraic equations and
that will, on the other hand, fit in more directly with problems of design.
Some of the methods concerned primarily. with the first problem are
considered in the following section. Methods intended to bypass the
difficulties associated with the transient solution as well as to facilitate
design are represented by the frequency approach to be considered in
the next chapter.

9-9. Short-cut Methods and Part Solutions of System Equation.—
The previous section has described procedures for determining the com-
plete response of a servo system to applied excitation functions. This
response may be formulated in terms of either the output or the error as a
function of time, but either form can be readily converted into the other.
The nature of the response will be given by an analytic expression that will
include both transient and steady-state terms. The transient terms are
those which approach zero as ¢ approaches infinity, and the steady-state
terms those which remain constant as ¢ approaches infinity. From the
analytic representation of the complete response or from the correspond-
ing graphs, one can answer any questions that may be raised concerning
special features of the response.

Problems arise, however, in which it is not necessary to have complete
details concerning all features of the response. One may, for example,
need to know only whether or not a particular type of time function, such
as an oscillatory phenomenon, is present or whether the transients are
substantially over in a certain time interval. The question arises,

Keller, Mathematics of Modern Engineering, Vol. I, Wiley, New York, 1936; L. E.
Dickson, First Course in Theory of Egquations, Wiley, New York, 1922; J. B. Scar-
borough, Numerical Mathematical Analyses, The Johns Hopkins Press, Baltimore,
1930; E. T. Whittaker and G. Robinson, The Calculus of Observations, Blackie, Glas-
gow, 1929, pp. 106-118; and T. von Karman and M. A. Biot, Mathematical Methods
in Engineering, McGraw-Hill, New York, 1940. Papers bearing particularly on the
determination of complex roots are those of 8. Liu, ‘“ Method of Successive Approxima-
tions for Evaluating the Real and Complex Roots of Higher Order Polynomials,”
Jour. Math. and Physics, 20, No. 3, August 1941; and H. S. Sharp, ‘“Comparison of
Methods for Evaluating the Complex Roots of Quartic Equations,” Jour. Math.
and Physics, 20, No. 3, August 1941,
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therefore, whether or not such limited items of information can be obtained
by less laborious procedures than those described, i.e., can we obtain
special types of information without bothering to obtain the rest. In
the present section are collected a number of methods that have such
limited objectives. In certain problems they may be capable of giving
us all the information that we require; in others they may help by giving
us a relatively quick estimate of certain features of the response as a
preliminary to the carrying through of the complete solution. The
following topics will be considered: (1) determination of steady-state
response, (2) inferences from roots of the characteristic equation, (3)
inferences from coefficients of the characteristic equation, and (4) graph-
ical methods and higher-degree equations.

Determination of Steady-siate Errors.—Since the steady-state errors
represent important performance properties, it is often of interest to be
able to determine their magnitude without the necessity of obtaining
the complete solution. This result may be achieved through application
of one of the special theorems of Laplace transform theory, the final
value theorem. It states that

lim F{t) = lim sF(s).

{~r s—0
It is applicable when the function #(s) has no poles on the jw axis or in
the right half plane.!

In applying this theorem to determination of steady-state errors,
one starts with the error equation of a given system and substitutes the
appropriate function for 8; (s) such as K/s if the displacement error is to
be determined, N/s? if the velocity error, and so on. (Here K and N
are constants that represent the magnitude of a step function and the
slope of a ramp function respectively.) At this point, one merely multi-
plies E(s) by s and evaluates the limit of sE(s) as s — 0. The procedure
is illustrated below for the error equation of a proportional servo system.
Tt is assumed that the velocity error is to be determined; hence 6; (s) is
taken as N /s>

E(s) = Js? + fs (s) = Js*+fs N

—J82+f8+k06i —JS?-{"fS"i'knéTi (68)
. WUs+HN
= ST T s + ) 69
) Y (Js+NHN [
Jm BO = M e st E R ()
- kl ik, = ?

! Gardner and Barnes, Transients in Linear Systems, Vol. 1, Wiley, New York,
1942, p. 265.




260 SERVO THEORY: TRANSIENT ANALYSIS [Skc. 99

43

the so-called “wvelocity error constant.” If the displacement steady-
state error is wanted, K/s is substituted for 6:(s) and it is found that

. ({Us+NHK
EG) = g T fs + ko)

and 7
lim B(t) = lim S8 T DK

sUstpR 0
1— s_)0./82+f8+k0 ]\"0 ’

Hence, in the case of the proportional servo system with an inertia-
viscous {riction load, the steady-state displacement error is zero, and
the velocity lag error is N /k., or the slope of the input velocity function
divided by the velocity error constant.

It is of interest to compare the procedure involved in application of
the final value theorem and that involved in evaluation of the steady-
state term when one obtains the complete solution. Let us review the
steps carried out in finding the complete solution of Eq. (69).

. Us+NHN A B C
E(S)—s(Js2+fs+kn)_§+s+sz s+ s

where A, B, and C represent constants that are still to be determined
and —s; and —s; are the roots of the quadratic factor in the character-
istic function. It will be recalled that a term such as A/s, corresponding
to a first-order pole at the origin, has the constant 4 as its inverse trans-
form. If the remaining terms do not have poles on the jw axis or in the
right half plane, then A will be the value of the steady-state crror.
Poles on the jw axis would indicate a sinusoid of constant amplitude;
poles in the right half-plane, a time function (either oscillatory or expo-
nential) of progressively increasing magnitude. First-order poles in the
left half plane, however, signify decreasing exponentials or damped
oscillations, which will tend to zero as ¢t — «. Consequently, if the real
part of roots —s, and —s; are negative, this latter situation holds, and
the second and third terms in Eq. (71) can be neglected, since they give
rise in the time solution to transient terms. The steady-state error is
thus given by A. If 4 is evaluated by the procedure described in Sec.

9-8, it is found that
_ [ Us+pN
A= [S(Jsl + 75 + ko) Jimo (72)

s
=V

71

We thus find, by comparison of Eq. (72) with [2q. (70), that the procedure
prescribed for evaluating the constant A in a partial fraction expansion
is identical with that called for by the final value theorem. Hence,
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application of the theorem is equivalent to carrying out the inverse
transformation of the error equation and discarding all terms in the partial
fraction expansion other than those with a first-order pole at s = 0.

Inferences from Roots of Characteristic Equation.—In obtaining the
complete solution of the error equation, one essential step, as a pre-
liminary to the partial fraction expansion, was determination of the
roots of the characteristic equation. These roots were then represented
in the denominators of the various partial fraction terms [see Eq. (31)]
and subsequently determined the form of the time functions that appear
upon carrying out the inverse transformation. It is thus evident that
the nature of the roots will determine the form of the various terms in
the time solution. Hence, if one is interested only in the form of the
time solution it is not necessary to carry out all the steps that would be
required for the complete solution.

The specific correlations that hold between the character of the roots
and the time functions are probably most clearly exhibited by diagrams
such as those of Table 9-1b, which shows the relation of the poles of the
function and the corresponding time function. Specification of the
location of a pole is equivalent to plotting a root of the characteristic
equation in the complex plane. Wherever a complex root occurs, there
is also a conjugate root, and hence poles not on the real axis occur in
conjugate pairs.

The chief relations that hold between the position of the poles and
the form of the time functions may be summarized as follows:

1. Consider first how the time function changes as the poles move
from the right to left side of the complex plane. Poles in the right
half plane indicate an unstable system, signifying time functions
that grow progressively in magnitude; poles on the imaginary axis
signify steady-state functions, a constant if the pole is at the
origin and a sinusoid of constant amplitude if the poles are on both
sides of the real axis; poles in the left half-plane signify transient
terms, decreasing exponentially with time. If the poles are
paired, lying above and below the real axis, the time function is a
sinusoid with an exponential envelope. If the pole lies on the real
axis, the time function is simply an exponential (the carrier sinusoid
may perhaps be regarded here as of zero frequency). The dis-
tance of the pole from the imaginary axis corresponds to the rate
of decrease or increase of the time function, 7.e., to the slope of the
exponential-—the greater the distance the greater the slope. In
the special case in which the poles lie on the imaginary axis, the
real part of the root is zero, and consequently the slope of the
exponential curve or envelope is zero.
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2. Consider second how the time function changes as a pair of poles,
corresponding to conjugate complex roots, moves closer and closer
to the real axis. The imaginary part of the root, represented
graphically by the distance of the poles from the real axis, is equal
to the angular frequency of the sinusoid. Therefore, as this
distance decreases, the frequency of the oscillation decreases
progressively to zero.

The relations just summarized all relate to first-order poles, corre-
sponding to any given root occurring singly. Similar relations, corre-
sponding to higher-order poles, may be readily derived by inspection of
a suitable table of transform pairs. It will be found helpful to visualize
or construct a graphical plot of the poles while verbally formulating the
relationships.

Inferences from the Cocflicients of the Characteristic Equation.—If the
characteristic equation is of the third or fourth degree or greater, deter-
mination of the roots is laborious as already pointed out. Hence efforts
have been made to find clues to the nature of the time response at a still
earlier stage in the process of solution. With respect to the stability of
the system (unstable systems being represented by time functions of
increasing magnitude), Routh found such an index in the relations between
the signs and magnitudes of the coefficients of the characteristic equation.
One necessary condition for stability is that all the terms in the equation
be of like sign. FEven if this condition is met, however, the system may
still be unstable. To determine the supplementary conditions required
for stability, a determinant must be set up based on the relative mag-
nitudes and signs of the coefficients. A clear deseription of the method.
with examples, may be found in Gardner and Barnes. Routh’s criterion
rests ultimately on the same basis as that of using the roots of the
characteristic equation, since the character of the roots depends on the rela-
tions existing between the coefficients of the original equation. Rela-
tions of this sort will be familiar to the reader acquainted with the theory
of equations.

Graphical Methods and Higher-degree Equations.—TFrequent reference
has been made above to the difficulty involved in solving system equa-
tions with higher-degree characteristic equations. This circumstance
has led to attempts to develop easier methods for determining the nature
of the transient respense. A way out has been sought through the use
of graphical procedures based on the use of relational parameters and
nondimensional response curves. Two different though related types
of approach may be distinguished: (1) the development of special charts
for finding the roots of specific cquations of higher degree, and (2) o
general procedure of factoring an algebraic equation of any degree greater
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than the second into a series of factors of first or second degree. Both
approaches represent extensions of the nondimensional methods deseribed
in Sec. 9-8, originally developed by Draper, Brown, and their students.

The first approach has been followed by Weiss, Liu, and Evans!
through the provision of special charts for determining the roots of
third- and fourth-degree equations. Weiss’ charts, for finding the roots
of the cubic equation, are based on the writing of the cubic in the form

P* + 20wnp? + wip + Swd = 0, (73)

with p representing the variable and the other terms specially defined
relational parameters. Liu and Evans also developed cubic charts, but
on the basis of the cubic written in terms of a different set of parameters.
They represent the cubic as the product of a linear and quadratic factor,
as in Eq. (74), and define their parameters w,, and ¢, as the undamped
natural period and the damping ratio, respectively, of the quadratic
factor.? The factor £ is selected so that — fw., represents the single
real root of the cubic.

(p + twng)(p® + 28 wnep + w?\q) = 0. (74)

The merit of this choice of relational parameters lies in the fact that the
nondimensional response curves already developed for the quadratic
(see Sec. 9-8) can now be used in determining the characteristics of the
oscillatory component of the cubic.? The parameters ¢, and w, of Weiss’
equation do not, on the contrary, represent a damping ratio and undamped
natural frequency but are defined simply in terms of the coefficients of
the original cubic equation. In Brown’s opinion, Liu’s charts have

'H. K. Weiss, “Constant Speed Control Theory,” Jour. Aero. Sci., 6, No. 4,
February 1939; Y. J. Liu, Servomechanisms: Charts for Verify?ng Their Stability and for
Finding the Roots of Their Third and Fourth Degree Characteristic Equations, privately
printed by Department of Electrical Engineering, Massachusetts Institute of
Technology, 1941; L. W. Evans, Solution of the Cubic Equation and the Cubic Charts,
privately printed by Department of Flectrical Engineering, Massachusetts Institute
of Technology, 1941. A stability chart for the cubic, based on Liu’s chart, may also
be found in E. 8. Smith, op. cit., p. 242.

 For comments on these two procedures for developing cubic charts, see G. S.
Brown, Transient Behavior and Design of Servomechanisms, privately printed by
M.I.T., Department of Illectrical Engineering, 1941 and 1943, pp. 30f.; and G. S.
Brown, and A. C. Hall, Dynamic Behavior and Design of Servomechanisms, preprint
ASME meetings, November 1945, p. 18.

3 The possibility of dealing with the cubic in this way follows from the simple
inference that a cubic must contain at least one real root. Since a third-degree equa-
tion must have three roots, and since complex roots always oceur in conjugate pairs,
one of the three roots must of necessity be real. 1t is the one represented in the linear
factor (p + f{wa). The other two roots may be either real or complex depending on
the value of 3,. The question of which they are is left open by incorporating these
two roots as the roots of a quadratic.
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proved somewhat more useful in servo-system analysis than have the
charts of Weiss.

Liu’s charts for obtaining the roots of the fourth-degree equation are
based on the procedure of factoring the fourth-degree polynomial into
two quadratic factors, each of which may have two roots which can be
real or complex. This method of factoring is shown in Eq. {75), taken
from Liu.

(A2 4 20108 + o2) (N 4+ 2000 + 0F) = 0, (75)

where A = the independent variable,

¢1 = the damping ratio of component (or factor) 1,

{2 = the damping ratio of component (or factor) 2,

w, = the natural frequency of component 1,

w,, = the natural frequency of component 2.
The treatment of the quartic thus follows along the same lines as that
developed for the cubic. Since there are four roots, they may be regarded
as grouped in pairs as the roots of two quadratics. The parameters ¢,
a damping ratio, and w,, a natural frequency, have the same significance
as indicated in the discussion of the second-degree characteristic equation.

The second approach mentioned above represents an extension of

Liw’s method of factoring third- and fourth-degree equations. A poly-
nomial of any order is represented as the product of a series of quadratics
if the polynomial is of even order. There is an additional linear factor
if the order is odd. The reason for this is exactly the same as that given
for the presence of a linear factor in the case of a cubic equation. In
analytical form, the factoring of a higher-degree equation in this way
is shown by Eq. (75), based on Brown and Hall !

pr A bpt Fepmt 4 -
= (p? + 2ewnap + i) (P + 2wmp + k) - - - (p+a). (75)

As explained by Brown and Hall:?

Each quadratic factor contributes to a mode of oscillation in the solution
having damping ratios {., {1, {, and undamped natural frequency o, @Wa, @ne,
and so on. Then by the principle of linear superposition the servomechanism
response is the sum of the responses attributed to the specific modes qa, b, ¢, ete.
Thus for each component of the error response the duration of the transient is
given qualitatively by reference to the types of solution given . . . for simple
quadratics, and the magnitude can often be approximated from the observation
that the higher the magnitude of the root the smaller the coefficient of the time
solution involving that root.

! For further discussion of this method of treating higher degree characteristic
equations, see Brown and Hall, op. cit.,, p. 22.
Z Ibid., p. 22.
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9-10. Summary.—The present chapter has introduced the general sub-
ject of the theoretical study of servomechanisms. The three basic ques-
tions in servo theory are: (1) how does the system perform; (2) how does
its performance compare with specifications; and (3) if it fails to meet
specifications, how can it be modified so that it will do so. Preliminary
concepts and methods discussed have included: transformation and
operational methods, particularly the Laplace transform methods; trans-
fer functions; generalized block diagrams; and standard forms of input
functions. The setting up and the solving of system equations have been
treated, together with short cut methods of value both in obtaining
complete solutions rapidly and in obtaining partial solutions which answer
specific questions (e.g., stability). The emphasis of the present chapter
has been on transient solutions.

The next two chapters will consider the steady-state frequency analy-
sis approach, evaluation and correction of system performance, and a
number of special problems such as nonlinearity and change of gain.



CHAPTER 10
SERVO THEORY: FREQUENCY ANALYSIS

By G. L. KREEZER

10-1. Introduction.—A second approach to the analysis and design
of servo systems is based on the steady-state response of the system to
sinusoidal inputs. This method of analysis has two chief merits com-
pared with the transient method: (1) It is less laborious to apply when
the system becomes relatively complicated and the degree of the char-
acteristic equation exceeds two or three, and (2) it lends itself more
directly to the development of design procedures for improving the sys-
tem. The method depends essentially on the construction and inter-
pretation of graphs representing the steady-state response of the system
to sinusoidal inputs covering an appropriate frequency range. This
method will consequently be referred to as the irequency approach.

The steady-state response to a sinusoidal input of any particular
frequency will be a sinusoid of the same frequency but generally differing
in amplitude and phase. Hence the response at a given frequency can
be completely defined by giving its amplitude and phase relative to
that of the input signal. These relations can be concisely represented
symbolically.!

If 6;(t) = A; cos (ot + ¢;) = Re(Ae*e™)) and

8.(1) = A, cos (wt + ¢,) = Re(4 L LON

then the relation of 6,(t) to 6;(f) at any particular frequency w can be
completely specified by means of the ratio P(jw) of the rotating vectors
used to represent them. The symbol “Re’’ designates the real part of
the complex number or function.

A eiteeit 4,

P(jw):xW—Ai

01 (6a—0) (1)

The value of this ratio, which may be designated as the transfer ratio,
is thus a complex number with 4,/A4; constituting the modulus or abso-
lute value and (¢, — ¢:) the phase angle. Like any complex number, it
can be regarded as represented by a vector drawn from the origin of the

t The method of representation follows closely that of Hall. The terminology
here differs from Hall, however, in that the term ‘“‘servo system transfer function” is
not limited to the feedback transfer function.

266
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complex planc.  Alternatively, it can be speeified by giving its real and
imaginary parts. The modulus A,/A4; gives the ratio of output to input
amplitude, and (¢, — ¢;) gives the magnitude of phase difference between
output and input. A negative sign will indicate that 8, lags behind 6;,
and a positive sign that it leads. Now if w is allowed to take on a range
of different values, we obtain a specific amplitude ratio and a specific
phase difference for each value of w. The set of values of the amplitude
ratio corresponding to different values of w may be designated as the
amplitude! or gain function, and the set of values for the phase as the
phase function. The amplitude and phase functions together constitute
the frequency response of the system. These two frequency-response
functions can be plotted as graphs in a number of different ways which
will be described below.

Any such graphical representation may be regarded as a means. for
representing the characteristics of the system, and the ensuing inter-
pretation of the graphs a procedure for determining performance or
response characteristics. The steps involved in thus determining system
performance by the frequency approach consist in (1) determination of
irequency-response data for the system, (2) plotting the data by one or
more of the available methods, and (3) interpretation of the graphs to
give performance characteristics of the system. Each of these steps will
be considered in turn in the following sections. A final section will
summarize the kind of operations that may be performed on the various
types of frequency diagram.

In the section on preliminary concepts, three different kinds of transfer
function have been defined: the feedback transfer function 6,(s)/E(s),
the output transfer function 8,(s)/6;(s), and the error transfer function
E(s)/6:(s). As already pointed out, the last two functions are uniquely
determined if the feedback transfer function is known. Although the
different ways of plotting frequency-response curves might formally be
used for any one of the three types of transfer function, the frequency
approach relates principally to the feedback transfer function. Unless
otherwise specified, the sections to follow will relate to it. Some use is
also made of the output-transfer function as a basis for the development of
certain principles of interpretation. The error transfer function, which
plays so prominent a role in the transient analysis, is not used at all in
the frequency method.

10-2. Determination of Frequency-response Data.—Since the applica-
tion of the frequency approach is based on the use of graphs of the
frequency response of the system, the first need is to obtain the data

1.This use of the term amplitude, in accordance with conventional a-c terminology,

skould not be confused with the occasional use of amplitude in mathematics to desig-
nate the argument or phasc angle of a complex number.
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corresponding to the amplitude and phase functions. A number of altes-
native methods are available. In case the feedback transfer function of
the system is known analytically, the amplitude and phase functions ean
be computed from the transfer function. A second computational pro-
cedure has been described by Bode (see below), which permits cither the
phase or amplitude function to be computed from the other function.
Finally, if the physical system is available, the necessary data may be
obtained empirically.

Computation from the Transfer Function.—From the definition given
of the transfer function, it follows that for a known transfer function
and any given input function, the value of the output response may he
computed. Thus we may assume the input to be a sinusoidal wave and
represent it by the appropriate operational expression (as given, for
example, by transform pairs & or ¢ of Table 9-11), compute the steady-
state part of the output response, and thus determine the amplitude and
phase relations of output to input. It turns out that the same result can
be obtained more easily by starting with the transfer function of the
system KG(s), substituting jo for s to give the frequency transfer
function KG(jw), and finally substituting an appropriate range of specific
values for the angular frequency w, to obtain the amplitude and phase
functions. At any particular value of w, the transfer function will be a
complex number that can be specified in terms of either its modulus and
phase angle or its real and imaginary parts. The set of values of ampli-
tude and phase thus determined provides the necessary data for plotting
amplitude and phase functions.

The relation of this procedure to the concepts of complex function
theory is of interest. The function KG(s) is a function of the complex
variable s. The nature of the function can be examined by means of
corresponding plots on two complex planes, on the complex s-plane to
show a given set of values of s and on the complex KG(s)-plane to show
the corresponding values of KG(s). If it is assumed that s takes on the
series of values extending from —je to 4jw, this set of points is repre-
sented in the s plane by the jo, or imaginary axis. The KG(jw) function
defines the corresponding set of values in the KG(s) plane. When
plotted, the resultant curve constitutes the conformal map of the jw
line on the KG(s) plane. As will be apparent later, this conformal plot
is identical with the transfer locus, which plays an important part in the
analysis of feedback systems by means of the frequency approach.

Phase Function and Amplitude Function Computed from Each Other.—
Bode, in his discussion of design procedures for feedback amplifiers,
has emphasized the fact that in a minimal phase system the amplitude
and phase functions are not independent. When one is specified, the
other is thereby determined. Mathematical investigations bearing on
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this relationship had been made by a number of previous workers, though
in different contexts.! Bode has also worked out procedures to facilitate
computation of the one function when the other is given or when only
parts of each function are given for different parts of the frequency range.
These methods are of special value in cases in which a physical system
has been set up but the feedback transfer function is not known ana-
Iytically. In such cases the amplitude function may usually be deter-
mined quite readily by direct measurement, but empirical measurement
of the phase response is often difficult. Bode’s methods make it possible
to dispense with physical measurement of the phase response and to
compute it from the amplitude function. For a description of these
methods, Bode should be consulted.2 The reciprocal dependence of the
two functions has also been utilized by Bode to develop criteria of basic
importance in the design of feedback amplifiers.? These same criteria
are also relevant in the design of servo systems, since servo systems
are exact analogues of feedback amplifiers.

Empirical Determination of Frequency-response Data.—It is also pos-
sible to obtain the data corresponding to amplitude- and phase-frequency
functions by means of direct physical measurement. If a sinusoidal
oscillation of constant amplitude is introduced at the input of the servo
system, then within a relatively short interval, steady-state conditions
may be assumed to be operative and all points of the system will show
sinusoidal oscillations of the same frequency but possibly differing in
amplitude and phase from each other. If the amplitude and phase of
this oscillation for the error E(f) and the output 6,(f) are measured by
appropriate experimental methods,* the amplitude ratio and phase
difference can be computed, the amplitude and phase of the error being
taken as reference. If the input signal is made to vary in frequency
from zero through an appropriate frequency range, the amplitude and
phase relations can be determined as a function of frequency.

If it is experimentally possible to measure the output response and
error response directly, then it does not matter in theory whether the
feedback loop is open or closed. For although the properties of the
oscillation at a given point will differ for these two conditions, the pro-
cedure of measurement assures our obtaining the ratio of the vectors
representing 0,(¢) and E(¢). This ratio must always be the same for a

! See, e.g., Y. W. Lee, “Synthesis of Electric Networks by Fourier Transformation
of Laguerre’s Functions,” Jour. Math. and Physics, 11, 83-113, June 1932.

*H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York, 1945, pp. 303-359; see also Sec. 10-3 of this volume.

* H. W. Bode, op. cit., pp. 451-488; ‘‘ Relations between Attenuation and Phase in
Feedback Amplifier Design,” Bell System Tech. Jour., 19, 421-454, July 1940; U.8.

Patent 2123178, July 12, 1938.
4 See Chap. 13.
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given frequency, since it depends only on the parameters of the part of
the system lying between the “error point’ and the “output point”™
(see Fig. 9-3). One must be sure, however, that the crror, defined as
6:(t) — 0,(¢), is actually being measured, for in many systems this quan-
tity may not be accessible to physical measurement but must be inferred
from measurements made at some adjacent point of the system. In such
instances, if the amplitude and phase of the crror function cannot he
computed by a mathematical relation, it may be necessary to make
measurements with the feedback loop open at a convenient point. Then
the vector ratio of the a-c signal at the end of the loop to the signal fed
in at the beginning of the loop will correspond to the desired ratio
0,(jw)/E(jw) at the given value of w (exeept for a possible reversal of
sign).! If the signal is actually fed in at the 6; point and measured at
the 6, point, then the 6,/6; ratio will be identical with the 6,/I ratio,
since with loop open or broken, the error and input sinusoids are the
same. For in this instance,

E(t) = 6.0 — 0.() = 6:(t) — 0. (2)

In some systems, however, opening the loop may make measurements
difficult due to system instability occasioned by removal of the corrective
influence of the negative feedback link. Iixperimental techniques and
precautions necessary for actually measuring amplitude and phase
relationships are considered in Chap. 13.

10-3. Graphical Plots of the Frequency Response.—The utilization of
the frequency method of analysis hinges on the fact that important per-
formance properties of the system can be determined from graphs of the
frequency functions. In the present section different ways of plotting
these functions are described. The interpretation of the graphs in
terms of performance properties will follow in the next section. As a
preliminary to the methods described helow, it is assumed that the value
of the complex number representing the transfer ratio of output to input
has been obtained for an appropriate range of values of w.

Transfer-locus Plot in the Complex Plane.—For any given value of w,
a point may be plotted in the complex plane for each pair of values
specifying the value of the complex number representing 6,(jw)/E(jw).
The real and imaginary parts may be used to find the point or the modulus
and phase angle, as polar coordinates. The line connecting all of these
points, for various values of w, is designated as the transfer locus (following
Hall’s terminology) or the Nyquist diagram. At representative points
along the locus, the value of w may be specified to indicate the corre-

! In making such measurements, it is, of course, necessary that impedance rela-

tions not be allowed to change when the loop is broken and an a-c source and measur-
ing instruments inserted at the place where the loop is broken. See Chap. 13.
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spondence of different regions of the locus with the frequency scale. The
vector drawn from the origin to any point on the locus represents the
transfer ratio of output to input at
that frequency. An example of this ~270°
type of graph is shown in Fig. 10-1.
Reference to Sec. 10-2 will show that
the transfer locus isidentical with the  -180°c1+j0 Woe Real 0°
conformal mapping on the complex ANE i
0.(s)/E(s) plane of the line s = ju. 2

Decibel vs. Log Frequency Dia- %5. S
grams.'—If the frequency-response
data corresponding to a set of values X
of wis given in terms of the modulus
18.(je)|/|E(jw)| and the phase lag ¢,
then the relation of these quantities “o  |~90°
to frequency may be shown by plot- Fre. 10-1.—Graphical determination of
. . system and error transfer functions.
ting two separate curves in rectangu-
lar coordinates, the modulus, or gain, in decibels against logarithm of the
frequency and the phase against logarithm of the frequency. In some
cases it 1s satisfactory to plot the two curves on separate grids; in other

Imaginary
axis

KG (jw) plane

Ry
(=3
&

-90

Phase in degrees
Gain in db

J
—
@
(=]
o

TF1G. 10:2.—Nyquist’s stability criterion as applied in decibels vs. log frequency method of
plotting feedback transfer funection.

cases, when the relationship between the two is of paramount interest,
as in the application of the Nyquist criterion, then it is more useful to

1 A reference to the literaturc dealing with frequency-response curves or decibel
vs. log frequency diagrams may be confusing at times, since a considerable variety of
terms may be used to refer to the curve showing the dependence of the absolute value
of transfer ratio on frequency. This is due to the variety of terms that can be applied -
to this magnitude. Among the terms that have been used are amplitude response,
gain, attenuation, and decibel. Although these terms all refer to the same trausfer
ratio, they may represent it in different units or with different signs.
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plot themn on the same grid. In such cases, for reasons that will be
apparent in See. 10-4, it is helpful to let the z-axis represent both the
0-db level and a phase lag of 180°. An example of such a plot is given
in Fig. 10-2. In this figure, the two separate scales for gain and phase
are indicated along the y-axis.

It is of interest to note that this type of graph really represents a
plot of the logarithm of the transfer ratio against the logarithm of o,
in the form of two separate curves. For if

Bo(jw) . 0"(.7.“")1 i (w) — i (w)

EGa) ~ |EGa) @7 = R, ®

where R(w) represents the modulus, expressed as a function of w, and

¢{w) specifies the phase angle as a function of w, then, taking the natural
logarithm of each side,

8o(jw)

In 24~

E(jw)

= In R(w) + jo(w). (4)

We thus have a new complex function in which the In R(w) is the real
part and j¢(w) is the imaginary part. Each part may be plotted sepa-
rately against the logarithm of w. It has been customary to plot R in
decibels (which amounts to a plot of 20 logis R), and w as logie w. Plot-
ting R and w in these units rather than in terms of the natural logarithms
given by Eq. (4) amounts merely to a change in the size of the scale
units used in the graph and does not alter the logarithmic relationships
between the variables.

Decibel vs. Log Frequency Diagrams: Approximate Curves.—In place
of the exact decibel log w curves, approximate curves can be used that
represent the data with sufficient accuracy and have certain special
advantages.! These advantages include elimination of laborious com-
putation, the provision of valuable indices of system accuracy, and the
direct graphical representation of the time constants of the dynamic
units of the system.

For purposes of illustration, let us again use the transfer function of
the proportional servo system, with a load member involving inertia
and viscous friction, as given by Eq. (5). It is convenient here to sub-

! Descriptions of or references to this approximation method of plotting decibel
log w diagrams have been given by E. B. Ferrell, ‘The Servo Problem as a Transmis-
sion Problem,” Proc. IRE, 38, 763-767, November 1945; L. A. McColl, Fundamental
Theory of Servomechanisms, Van Nostrand, New York, 1945, pp. 45-48; N. B. Nichols,
see following reference; D. P. Campbell, “A Discussion of the Db-log Frequency
Methods of Analysis and Synthesis of Automatic Control System Behavior,” based on
lecture by N. B. Nichols, Massachusetts Institute of Technology, Dec. 21, 1945;
H. Lauer, R. Lesnick, and L. E. Matson, Servomechanism Fundamentals, Chap. 9,
MecGraw-Hill, New York, 1947. See also Vol. 25, Radiation Laboratory Series.
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stitute predimensional parameters k, and T for the physical parameters
to give the transfer function in the form of Eq. (6) [see Eq. (44), sec. 9-8].

_— ko -
KG(S) - J82 +fS (5)
ky
KRG = re g (©)
Substituting jw for s to give the frequency transfer function, we obtain
. _kv . 1 _m.. s
KG(]“’) - w(]vw _]) - kv w(T2w2 + 1) ( Iw .7) (7)

In determining the form of the gain curve of this function, we need con-
sider only the frequency-depen-

dent portion ___403db

. 1 . 30t N Stope of -6 ab
G = — . s -— ope O per octave

(go) w(T?w? 4+ 1) (=Tw =~ 3) B
(8) 25 ]
The constant gain factor k, can <20t _-;Ta b
have the effect only of changing = 3
.- 315 N

the position of the whole curve 3 XSIooe of ~12db
relative to the 0-db axisbut cannot X< 10} AN per octave
change its shape. Adjustment of _‘édb\\
the position of the curve corre- 51 & :ﬂf:?.l::te curve V@, o
sponding to the magnitude of k&, 0

can therefore be made later, after ¥ F T 2 w/” > bt }\.V
the plot of G(jw) has been obtained. Fio. 103—Gai @ decibel |
. N 1G. -3, —aln 1n ecibels vs. 0
An approximate plot of G(jw) frequency plot of KG(jw). This may bg
in terms of the decibel log w taken as a plot of G(jw) if the gain constant
h b d k or k, is unity (0 db), in which case w¢ = 1
scheme can now be made very [.dian per second.
simply.! The steps involved in
plotting the gain curve, |G(jw)|as are:2 (1) Plot the point correspondin
g
to a gain of 3 db plus |G(jw)lws at @ = 1/T;? (2) to the left of this point,
draw a straight line with a slope of —6 db per octave; (3) to the right
of the point, draw another straight line with a slope of —12 db per octave.

! In making such plots either log-log paper or semilog paper may be used depend-
ing on whether gain is plotted in units of decibels or in terms of absolute ratio. Itis
often helpful to use log-log paper and show the gain scale in terms of both the absolute
ratio |G(jw)| and decibels. Then one may read off the gain or plot it in either type of
unit.

2 The procedure for plotting the phase curve is given at the end of this section,
following complete discussion of the gain curve.

3 Note somewhat easier procedure for plotting low-frequency asymptote proposed
later in this section.
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This curve constitutes our approximation to the gain function of Eq. (8).
It will be referred to as an asymptotic decibel log w plot, since the straight
lines are asymptotes to the exact curve. Figure 10-3 can be regarded as
showing the results of this procedure if the constants K and k, shown in
the figure are understood to equal 1.

What is the justification for the above procedure? In approximating
the true curve in this way, four assumptions are involved: (1) that the
straight line of —6 db per octave slope
can be used to represent the gain curve
for values of w <« 1/7, (2) that the line
of —12db slope can be used to represent,
T the curve for w > 1/T, (3) that their

AL W, intersection will occur at @ = 1/7T, and

S #@)  (4) that the errors of approximation are
wi TZw?+l N R

(T G sufficiently small at all points to be con-

sidered negligible. The maximum
value of this error will be 3 db, and it
will oceur at w = 1/7'.

Justification for these assumptions
can be obtained quite readily from a
consideration of Eq. (8). From this equation, let us find the value of the
modulus |@(jw)| and the argument or phase function ¢(jw). By means of
the conventional procedure for finding the value of the modulus and phase
angle of a complex number, we find (see Fig. 10-4)

Fi16. 10-4.—Computation of modulus
and phase angle of G(jw).

1
o /Tt £ 1 ©
¢{jw) = —180° 4 tan—! -7}—
w

= —180° + (90° — tan™! Tw)
= —90° — tan! Tw, (10)

1G(jw)| =

Writing Eq. (9) in terms of decibels, we obtain

1
wVT? + 1
= —20 log w — 20 log v/ T?w? + 1. (11)
We may now obtain approximate expressions for the gain |G(jw)las in
the two regions in which we are interested.

1. The decibel gain curve as w approaches zero: When w < 1/7,
Tw < 1, and T?w? < 1. Therefore

VT +1=1,

IG(jw)las = 20 log
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and Eq. (11) becomes
|G(jw)law = —20 log w. (12)

This equation represents {7(jw)|a as a linear function of log w; hence
a plot of it against log w will be a straight line. What will be the slope
of this straight line in relation to w? Let us designate as w, some value
of w in the region of the curve for which Eq. (12) is valid and compute
from Eq. (12) the value of |G(jw)|w at @ = ws, 2wa, 4w,, and so on. The
results are shown in Table 10-1.

TasrLE 10-1
o | IG(w)ab
wWg ~20 log Wa
2w, —20 log w. — 6db
4w, —20 log w. — 12 db

For each octave increase in w, the gain line falls by 6 db. This result
confirms the assumption made concerning the low-frequency end of the
curve.

2. The decibel gain curve for w>> 1/7: Whenw > 1/7T, Tw > 1, and
T?w?>> 1. Therefore,

VT 4+ 1 = /T = Tw.
Hence, if Tw is substituted for v/ T%? + 1 in Eq. (9),

. 1
IG(jw)| = m’
and
|G(jw)les = —20 log w — 20 log Tw. (13)

|{G(jw)la is here, too, a linear function of log w, since each of the two
terms on the right-hand side are linear functions of log w. Therefore
the decibel curve for w> 1/T will also be a straight line. To find its
slope relative to w, let w, represent a value of w>> 1/7, and compute
the decibel gain for oy, 23, and so on, by substitution for w in Eq. (13).
The results are given in Table 10-2.

TasLE 10-2
o | 1G(j)ab
wp (—20 log w, — 20 log T'wy)
2w, (—20 log wy, — 20 log Tey) — 40 log 2
= (—20 log wp, — 20 log T'w,) — 12db
4, (—20 log wy, — 20 log Tw,) — 24 db

Thus for every octave inerease in w, the gain curve falls by 12 db.
A somewhat simpler procedure than that given above may be pro-
posed for plotting |G(jw)lw in the interval 0 < w < 1/7, on the basis of




276 SERVO THEORY: FREQUENCY ANALYSIS [SEc. 10-3

the value of w at which the gain line intersects the 0-db axis. The equa-
tion of this line, as given by Eq. (12) is

|G(jw)les = —20 log w. (12)
At the point of intersection with the 0-db axis,

IG(jw)le = 0,
0 = —20 log w,
log w = 0,
Therefore
w= 1.

Hence, this line may be plotted by drawing a straight line of —~6 db per
octave slope through the point on the 0-db axis corresponding to w = 1.
Then, the point on this line whose abscissa is w = 1/7 is used as the
initial point of the line drawn in the next interval, with a slope of —12db
per octave, given by Eq. (13). These two lines constitute our plot of the
asymptotic gain characteristic for Eq. (8).

3. Where will the two straight lines intersect? The fact that the
two lines will intersect at w = 1/7 is shown most easily by substituting
w = 1/T in the equation for each line, Egs. (12) and (13). In both
cases,

16 (ju)an = —20 log

Hence the lines must intersect at w = 1/7.

4. What will be the errors of approximation involved in the use of
the asymptotic curves in place of the true curve? Equations for the
errors in the low and high regions of the w scale are readily computed.
For low w, let us subtract the value of gain given by the exact equation
(11) from that given by the approximate equation (12). A positive sign
for the error will indicate that the approximate curve lies above the
exact curve at that point. The symbol ¢ stands for the error of the
approximation.

aowe = —20 log V' T2w? + 1. (14)

Similarly for w > 1/T, we use Egs. (11) and (13). Then

eigho = —20 log T'w + 20 log v/ T2w? + 1. (15)

Table 10-3 shows the value of the error computed for various values of w.
The table shows that the error is greatest at the point of intersection of
the asymptotes, at @ = 1/T, but even here it is relatively small, equal
to only 3 db. As w varies by octave steps from the point of intersection,
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the errors become quite negligible. Figure 10-3 shows the relation of
the exact and approximate curves, drawn on the basis of these data.
The simple procedure just described for making an approximate plot

of the feedback transfer function given by Eq. (6) may now be extended
to transfer functions of any order and for cases where factors are present
in numerator as well as denominator. The steps involved are as follows:
1. The feedback transfer function, if given in terms of physical param-
eters, is rewritten in terms of the relational parameters &, and time

constants Ty, Ty, . . ., Tk, . . ., Ta. The various factors are
TaBLE 10-3.—ERROR (¢) IN |G(jw)lab
w Formg%1 Forwg%1
1
iT 0.3db | ......
L 1.0 db
57 0db | ...
1
T 3.0db 3.0db
2
T 1.0db
4
N L 0.3db

arranged in sequence to correspond to progressively decreasing time
constants, as Ty, Ts ..., T¢, ..., Ta. The form of the
resultant transfer function, for the general case, is given by Eq. (16).!
The symbol T is used to represent any time constant, whether it
appears in numerator or denominator, and T, the smallest time

constant.
05(s) _
s KG(s)

_ ko(Tes + D(Ts +1) - - - ]
Ts(TsFD)(Tss+1) -+ - (Thws+ 1) - -+ (Tas + 1)

The equation as written does not imply a like number of factors in
numerator and denominator. Factors containing s may, in fact,
be entirely absent from the numerator, as in cases where the
system does not contain phase advance components.

2. Through substitution of jw for s, the frequency feedback transfer
function is obtained, as in Eq. (17).

(16)

! The factors in this equation are here represented in the form (T8 + 1) instead of
1 . . . .
(s + Tk) since the form given first leads readily to the approximations for various

Juctors derived later in this section.



278 SERVO THEORY: FREQUENCY ANALYSIS [Swec. 10-3

G(jw) =
 Gela 4 DGl Y -
Jo(GeTy + DT+ 1) -+ GoTr+ 1) < -+ (T + 1)

In this equation, only the frequency dependent part of the function,
G(jw), is given, for reasons indicated earlier. Hence %, is not
shown on the right side of the equation.

3. The approximate expression for the gain transfer function |G(jw)|
can now be written as shown in Column 2 of Table 10-4. The
symbol |G (jw)! is used to represent the approximate gain function.
Table 10-4 shows that |G(jw)] differs for different intervals on the
o axis. The location of these intervals is determined by the
location, on the w axis, of the reciprocals of the various time con-

an

TABLE 10-4.—APPROXIMATE GaiN FunNcTions rorR HIGHER-ORDER TRANSFER

FuneTions
Glw) = e T+ DTy + 1) - - A
Jo(GwTi + D(GeTs + 1) - GoT% + 1) - -+ (JuT's + 1)
Frequency 16(;‘”)\ Slope of
interval Approx. gain function Iﬁ(m)zdb ‘G(]‘w)ldb
0 <w< Ti l —20 log w —6 db/octave
1 w
1 1 1 1
7 <w < T | =T —20 log w ~— 20 log «T — 12 db/octave
—% <w < Ti 1 —;I (wT2) —20logw — 20log wT) + 20log 7> —6 db/vctave
2 3 W w
7.<o <g | Lo ery o —2010gw — 20log T + 20log T4 — 12 db/octave
o — 20 log w73
1 . ) 1 1 1 1
= w | = = @T2) — - - - - - 1 wT2 o
7 <w < Ton | o oT, (wT'2) o7 o 20log w 20log wT1 + 20log wT: | +6a dh/actave*
—20logwTs - - - —20log wT%
e —6b db/octave

* a equals number of factors in numerator, and b equals numher of factors in denominator of {((jw).|

stants. In each succeeding interval an additional factor is present
in the function. The process of approximation consists in sub-
stituting w for the jw term, w7 for each factor of the form
(jwTr + 1) where wTx > 1, and substituting 1 for each factor
where wT:% < 1. T} here signifies any time constant. The same
type of substitution is made for factors in numerator or denomi-
nator. The justification for this procedure will be given below.

4. The approximate gain function is written in decibel form as shown
in Column 3 of Table 10-4. The procedure consists simply in
taking 20 logo |G(jw)|. Thus, for any given interval

1 1
'—E <w< TTQ
|G (o) = 20 loguo |G(jw)l = —20 log w — 20 log w7\

+ 20 log wT> ~ 20 log w73+ - - - — 20 log wT:. (18)
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The sign is plus for terms in the numerator of |G(jw)| and minus
for terms in the denominator of [G(jw)|.

5. |G(jw)|a can now be plotted by an extension of the procedure
already described for the proportional system. The straight line
for the interval 0 < o < 1/T; is plotted in exactly the same way
as before, by drawing a straight line of slope —6 db/octave through
the point (1,0) and locating on the line the point corresponding to
w = 1/T,. The next linear section of the curve starts from this
point and runs to w = 1/7T%, and so on for each succeeding interval.
The slope of the curve in each interval depends on the number of
terms present in the approximate gain function |G(jw)| in that
interval. The line has a slope of 6 db octave for each term (of the
form w or (wT) present in the approximate gain function. The sign
for the slope contributed by each term corresponds to the sign
of the logarithmic term. Thus for Eq. (19), the slope of the
curve in the interval 1/7T; < w < xwill be (— 6 — 6 + 6 — 6)
db/octave, or — 12 db/octave, as indicated by Eq. (20).

. (JuT2: + 1)
G = 7= a ’ 1
) Ue) = Juiuls + 1) GoTs + 1) (19
|GGw)las = —20 log @ — 20 log w7’y + 20 log w72 — 20 log w?'s;
for%é <w < <, (20)
6. Finally, the whole gain curve is displaced upward by an interval
equal to k,, in decibels.!

Some of the steps given above require further elaboration or proof.
Let us consider them in the order listed.

The initial step of writing the feedback transfer function in the form
shown in Eq. (16) (with the time-constant set of parameters) has already
been considered for a system with one time-constant factor (the propor-
tional servo system of See. 9-8 [Eq. (9-44)]. Let us see how the procedure
is carried out in the more general case. For illustrative purposes, it is
sufficient to consider a system with one additional time delay factor such
as that represented by Eq. (21) below, previously designated as Eq. 9-66
(Sec. 9-8). The additional delay factor here is provided by the induct-
ance-resistance field control circuit of a d-c motor. The transfer fune-
tion for the system in terms of physical parameters is

k])kakm
__._ fptam
s(Js + fi(Ls + R)
L A review of the various steps outlined will indicate that once the procedure has
been understood, it can be carried out merely from inspection of Eq. (16) or (17),

since these equations contain all the information needed for making the plot, taken in
conjunction with the rules just enumerated.

KG(s) = (21)
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where k,, ki, and k., represent sensitivity or conversion factors of poten-
tiometer, amplifier, and motor respectively. To throw the equation
into the form of Eq. (16), the isolated constant in each parenthesis is
factored out, and all constants collected in the numerator. Thus

kpkokm

sf is—{—l)R(%s—kl)

kokokm
fR

‘ (22)
s(%s-}— 1)(és+ 1)

Now if the term k, is substituted for the combination of constant terms
in the numerator, T'; for J/f, and T, for L/R, the equation will be in the
required form, as shown in Eq. (23).

KG(s) =

KG(s) =

k,
T F DTs ¥ (23)

As defined here, k, merely signifies the aggregation of constants repre-
senting the gain when the transfer function has been manipulated to
put it in the form of Eq. (22). What this aggregation includes will
depend, of course, on the number and nature of the energy storage
components. But it can be shown that k., if obtained in this way, will
have the dimensions of 1/sec and that it can be regarded as the velocity
error constant of the total system (see Sec. 10-4). It cannot be defined
in terms of a specific group of physical parameters that is the same for
all systems but depends on a group of physical parameters distributed
throughout the entire system, in the manner illustrated by the present
example.

We may now consider the basis for the procedure proposed in Step 3
for approximating terms in the gain function |G(jw)|. Equation (17) can
be rewritten as a product of a series of separate factors.

1 1
Glw) = ]waT 71 GeT: + D) o +1 Te ¥ 1

L (29
Therefore

T T+ 1
166Gl = L] [ Vo + 1 - !
AR 7 By ey | R Ty + 1
: l 1 I
wl, + 1| (25)

In passing from Eq. (24) to Eq. (25) we have merely determined the
absolute value of & complex function G(jw) by multiplying the absolute
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values of a series of component complex functions. Thus, at any value
of w, G(jw) as well as all the separate factors on the right-hand side are
complex numbers. Hence, the absolute value of G will equal the product
of the absolute values of all the components. It may be helpful here to
think in terms of the familiar conception of a complex number as a
vector, with the absolute value being equal to its length. Then

. 1 1 1
D = o A (@T)? . S
1GGw)| = = N/ OALES (wT2)® + 1 CTADES

1
VTt +1

Now, if for any term of the form v/ (wTx)? + 1, w K 1/T%, then 0T « 1,
(wTy? <1, and v/ (wTx)? + 1 = 1. Thus 1 can be used to approximate
the term v/ (wT%)2 + 1. This approximation is even closer for all terms
of this form still later in the series of terms in Eq. (26), since the terms
were arranged in order of decreasing time constants. That is,

(26)

Ty > Trpr > Toge =+ -,
therefore
Ty > wTliy1 > @Thye -+ - ’
or
0T < wTi < 0T K 1. 27}

Now, if at the same time it is assumed that w 3> 1/Ts_;, then w71 >> 1,
(wTk_1)2 > 1, and

\/(wT;,._x)z + 1 = \/(wTk_l)z = wTk._l.

This same type of approximation will hold for all earlier terms of this
form in the series, since

c o Thma > Tee > T
s wTis > 0Ts > 0T > 1.

Hence Eq. (26) can be written approximately as
. 11
1GGw)| = ;;—T—‘sz 111 (28)
for I/Tk..l KoK I/Tp;.
This same approximation may be assumed for the interval
1 1
Tex Ty
as well as for the interval 1/7_; K w < 1/T, though it cannot be

expected to be as good at the extremes of the interval. The magnitude
of the errors involved in the approximation is considered below. The

<w<
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result represented by Eq. (28) is the basis for the approximations for
|G(jw)| given in Column 2 of Table 10-4,

A graphical, and perhaps simpler, basis for passing from the terms of
Eq. (25) to those of Eq. (28) is provided if we think of each of the terms
of the form (juT'x 4+ 1) as a vector. For then the length of the vector
can be regarded as approximated by the length of its longer component
if the two components differ markedly in length, as illustrated in Fig.
10-5. On this basis we may skip the algebraic procedure of deriving

w

Hi

g )

g L

sl

E Ty

B 5"’T“\
wT,
1 Real axis 1
J1+iwT|=oT, +jeT,|=1
for wT)>>1 for w Tp<<1

Fia. 10-5.—Vector diagrams illustrating approximation of a vector by its lenger component.

the approximation and pass directly from the terms represented in
Eq. (25) to those in Eq. (28). For where

wTk > 1, 'ijk + 1l = wTk;
and where i
T K 1, ljwTe + 1] = 1.

Let us now determine whether or not we can provide a measure of the
errors of approximation involved in representing a transfer function of
any number of factors by means of an asymptotic plot. This is probably
done most simply by determining the error involved at any frequency
wg, due to any given factor in the transfer function. For in constructing
the asymptotic plot there has been an approximation made for every
factor in the gain function. Hence the tofal error of approximation will
equal the sum of the errors due to each factor present. We shall find
that the magnitude of the error due to a given factor, of the form
1/(jwTx + 1) or (joT: + 1), will depend on the ratio of the frequency w.
to the reciprocal of the time constant of the term considered;i.e., the error
will depend on w,/(1/T4+) or wsTx. The sign of the error will depend on
whether (jwT': + 1) appears in the numerator or denominator of the
transfer function. The error ¢ in decibels is computed by the obvious
procedure of determining the difference between the approximate expres-
sion for the absolute value of the factor and its eract value, with each
being given in decibels. That is, at a given frequency w,, the error cor-
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responding to a term 1/(jwT: + 1) will be

1 1
= | — — ] ; 2
b ]quk + 1 db approx ]O)TI; + 1 db exact ( 9)
1 1
w = Wlog{p) .~ 208 ‘mﬂﬁ\m (290)

A positive error will indicate that the approximate or asymptotic curve
lies above the exact curve; a negative error, that it lies below. The
procedure for determining the actual magnitude of errors consists merely
in substituting appropriate expressions for the two terms in Eq. (29a)
and then calculating es for different values of wT'.. Two types of cases
must be considered separately: (1) those in which 1/7: < w.and (2) those
in which 1/7T% > ws.

1. Let us consider first the cases in which 1/7% < w, ie, 1 < ol
In such cases,

1 1
!J"*’Tk + Yo A/ (wT%)? "F—l,
and
1 1
therefore .
1

€ = 20 lOg w_Tl - 20 lOg TW (30)
= —20 log T + 20 log v/ (wT)? + 1. 31)

We can now compute the e corresponding to different values of 17")7, or
k

wly. The results are given in Table 10-5.' They were obtained by
substitution of the specified value of w7 in Eq. (31) and use of a table
of common logarithms.

2. We may consider now the second type of case, that in which
1/Te > w, 1.6, 1 > «T% In such cases,
1

et A/ (@TR)E F 1

1 oL
.NTk + llDDro! o

€e = 20 log 1 — 20 log

1
lj“’Tk +1
as before, and

therefore

1
VTt + 1 (32)
=0+ 20 log v/ (@To? + 1. (33)

' The table previously given (Table 10-3) for the simple case of a transfer function
containing a single time-constant factor can be considered a special case of the present
tuble, as will be apparent from a comparison of the entries in the two tables.
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The results obtained for various values of w7 are shown in the right
half of Table 10-5. It will be noted that the table shows a logarithmic
symmetry in that the error (except for an altogether negligible difference
in two items) is the same for any given value of w7 and its reciprocal.

TaBLE 10-5.—ERROR OF APPROXIMATION ¢ DUE TO ANY TERM 1/(GwT: + 1) In
TransFER FuncTions G(jw)*

-—‘:—=ng§1 -%-=w'['k§l
T, Te
wTs ¢, db wT e db
1 +3.00 1 +3.00
2 +1.00 E +1.00
3 +0.46 3 +0.45
4 +0.26 e +0.25
5 +0.17 H +0.17

* When the factor is (jwTx + 1) instead of 1/(jwTx + 1), the sign given for the error ¢ is reversed.
A powitive error indicatoa that the approximate curve lies above exact curve.

The results of Table 10-5 hold for factors of the form 1/(jwT: + 1).
By running through the various steps with (jwT\ + 1) substituted for
its reciprocal, it will be observed that the same results will be obtained,
but with a change of sign. This reversal of sign will occur in going
from Eq. (30) to (31) and from (32) to (33). Hence for cases with
(jJwTr + 1) appearing in the numerator instead of denominator, the
entries of Table 10-5 can still be used if the sign is reversed.

In applying the results given in Table 10-5 to a given transfer fune-
tion, one need only determine the values of w7 for each time constant
T: appearing in the transfer function, obtain the corresponding error of
approximation from the table, and add up all these errors to give the
total error. It is apparent from the table that as w7 becomes greater
than 2 or less than 4, owing to the increasing interval between w and
1/Ty, the error due to a given term becomes negligible. The ratio of w
to any given 1/T) can often be obtained most readily from inspection
of an asymptotic plot on which the various 1/7 values have been indi-
cated along the w-axis as a preparation for drawing in the asymptotic
gain curve.

One further point that may require comment is the statement in
Step 5 concerning the slope of the decibel gain curve. 1t was stated that
each term in the approximate gain function |G(jw)| contributes 6 db per
octave to the slope of the decibel curve in that interval (see Table 10-4).
This result may, perhaps, be inferred from Table 10:4 and the procedure
used in determining the slope of the lines in the gain function of the
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proportional servo. It may be desirable, however, to demonstrate this
relationship explicitly for the general case. Let the approximate gain
function be given by Eq. (34). We may then determine the gain in
decibels at two points ws and 2w, an octave apart. The differences in
gain at these two points is 6 db for each term of the form w or 7T in the
gain function G(jw), the sign being positive for terms in the numerator
and negative for terms in the denominator. Consequently, the slope of
the line joining the points will be 6 db per octave for each term, with the
same rule for the sign as just mentioned.

~ . 11 1
1G(jw)| = ;w—leTz : wTs T, (34)
Gjw)|w = —20log w — 20 log wTy + 20 log wTs * - - —20log T « * * ;
at w = wa:
]é(jw)ldb = —20log ws — 20 log w,T1 + 20 log w.Ty —
< —20log w T + - ¢ ¢ ;
at w = 2w,
IGGw)la» = —20 log 2ws — 20 log 2w, T + 20 log 2waT> —
© 0 =20 log 2w, T - - -
= —20 log ws — 20 log wsT1 + 20 log weT2 -+ - — 20 log weT% - - -

— 201log 2 — 20 log 2 + 20 log 2 — 20 log 2.
Difference in gain at w, and 2w,:

[é(jwh)'db - Ié(jwa)ldb
= —20log2 — 20 log 2 + 20 log 2 — 20 log 2
= ~6db~6db+4 6db — 6 db.

There is thus a 6-db difference for each term, the sign being positive for
factors in the numerator and negative for factors in the denominator.
It will be noted in Table 10-4 that as we proceed to each succeeding
interval, one additional term is added to the gain function, and hence the
slope in the new interval changes by 6 db per octave, plus or minus,
relative to the slope of the previous interval.

The discussion up to this point has dealt wholly with the procedures
for obtaining an approximate plot of the gain function. It is necessary
to indicate a procedure for plotting the phase function as well. The data
for the phase function might be obtained, of course, by the straight-
forward substitution of different values of w in the transfer function as
described in Sec. 10-2. But if the transfer function contains many factors
in numerator or denominator or is of high order, the procedure is laborious.
The techniques utilized above of writing the transfer function in terms
of relational parameters Ty, T,, . . . , etc., and of regarding separate
factors as vectors turn out here too to be useful. Equation (35) gives

Difference
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the general expression for the feedback transfer function used previously.
Only the frequency dependent part is considered, since the phase of
any constant gain factor will be zero. The component factors are written
separately to indicate that each is to be thought of as a separate function.
Each is a complex function and may be represented at any given w as a
vector.

The phase of G(jw) can be readily obtained from that of the component
factors if we apply the rule that the phase of the product of a series of
vectors (or complex numbers) is equal to the sum of the phase angles of
the separate factors. To obtain the phase angle of the factors containing
complex functions in the denominator, we may apply the rule that the
phase angle of the quotient of two complex numbers is the phase angle
of the numerator term minus the phase angle of the denominator. Or
we may regard numerator and denominator as written in exponential
form and simply take the difference of the exponents. The phase angle
of any term such as (w7 + 1) will be tan~! w7} and of jw will be #/2.
Hence the expression for the phase angle ¢(jw) of G(jw) can be written
by inspection of Eq. (35) as given by Eq. (36).

Y 1 1 i 1 . . . 1 . . .
GUo) = 2 ar 41 0T+ 1) ey T F i » (35)
o(jw) = — g — tan! w7 + tan~! w7y — tan—' w73 — - - -
—tan™! T — -+ - . (36)

Every term in Eq. (35) of the form (jwT: + 1) contributes an angle
equal to tan—! w7 to the phase angle. The sign of this contribution is
positive if the term occurs in the numerator and negative if it occurs in
the denominator. Equation (36) holds for the entire range of values
of w. However, the contribution of any term in Eq. (36) to the lotal
phase angle, for a given value of w, will depend on the size of the time
constant of that term relative to the larger time constants occurring
earlier in the series.

To compute the phase angle ¢ for any value of w, it is necessary only
to know the relative magnitudes of the time constants T, T3, - + - , and
to substitute the given value of w in Eq. (36). To illustrate, suppose
that the function G(jw) contained only the first four factors shown in
Eq. (35). Then the phase angle is given by

o(Gw) = — g — tan~! 0T + tan—! w72 — tan~! wTs. (37)
Suppose it is specified that Ty = 47, and T3 = $7;. Then
P(Jo) = — g — tan7! w7 + tan~} ‘ié—‘ — tan™! ‘iél (38)
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Table 10-6 shows the value of the angles corresponding to the successive
terms in Eq. (38), as determined from a table of natural tangents.

T'aBLE 10-6.—CompPUTATION OF PHASE ANGLES

T
w wl o(Jw) = — T —tan~lwT: + tan‘lﬂl — tan-t 922
2 2 5
0 0 —-90° = —90°
1
o —90° — 11° +6° — 2° = -97°
sT, | ¢ %0 +
1 1 o Q o o o
— - - 14° — = —109
3T, 3 90 27° + 6
L 1 —90° — 45° 4+ 27° — 11° = —119°
Ty
2 2 —90° — 64° + 45° — 22° = —131°
T,
Ti 3 —90° 4 72° + 56° — 31° = —137°
1
’Ii' 5 —90° — 79° + 78° — 45° = —146°
1
ete.

Reference has already been made (Sec. 10-2) to the formulas and
charts developed by Bode for determining the imaginary component
from the real component of a network function and conversely. These
procedures are relevant here, since the natural logarithm of a transfer
function, when expressed in exponential form, gives the logarithmic gain
function as the real part and the phase function as the imaginary part
as shown by Eq. (4). If the gain function is transformed to a loss or
attenuation function, then it will be in the form required for Bode’s
formulas. It should be noted that the charts are especially designed to
permit determination of the imaginary component from the real com-
ponent when the real component is approximated by a series of straight
lines, as is the case in the construction of the asymptotic gain curves
discussed above. Bode’s book should be consulted for a description of
the charts and their use.!

In order to complete the method given above for rapid plotting of
frequency gain functions, reference should be made to a procedure for
dealing with quadratic factors. Thus a quadratic factor will occur in
the denominator of a feedback transfer function if an elastance as well
as inertial and dissipative types of component are involved in a given
energy storage unit. This quadratic factor may, of course, then contain

'H. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,

New York, 1945, Chap. 15, ““Graphical Computation of Relations between Real and
Imaginary Components of Network Functions, pp. 337-359.
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complex roots, a situation that it was not necessary to take into account
in dealing with the linear factors so far considered. A mechanical
example of a physical unit giving rise to a quadratic factor is the load
member of a servo system containing inertia, viscous friction, and
mechanical elastance. An electrical analogue is a single mesh containing
inductance, resistance, and capacitance in series, as shown in Fig. 10-6.
R This electrical example will be used here
o AL for purposes of illustration, since the
(2 ¢T =) dimensional status of combinations of the
familiar electrical parameters will be more
F1a. 10-6.—Electrical circuit giving  immediately obvious.
rise to quadratic factor. To indicate a method for dealing with
such quadratic factors, let us determine the frequency-transfer function of
this electrical unit and then determine what procedures can be used in
making a rapid plot of its decibel gain curve. The transfer function of
the network is readily shown to be

_efs) _ 1 .
P(s) = ei(s) LCs*+ RCs+ 1 (39)

It is convenient to rewrite this equation in terms of the relational param-
eters T, and {, where

T, = v/LC with the dimensions of sec,
and

r=

% \/—%_6; with no dimensions. 40)
This symbol ¢ is exactly equivalent to that defined in Sec. 9-8. The
only difference is that it is here expressed in terms of electrical param-
eters rather than mechanical ones.
From Eq. (40) we obtain
LC =T,
RC = 2T.

Substitution in Eq. (39) gives

P(s) = 1

T+ 2Tes + 1
The frequency transfer function is given by

. 1
PGo) = =omrFn 2502

Let us now determine the information required for a rapid plot of the
decibel gain curve of this transfer function.

(41)

(42)
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For w K 1/T, i.e., 88 w — 0,

. 1
|P(jw)| = 1
and
[P(jw)ldh = 0. (43)
Forw>» 1/T,, or 0Ty > 1,
. 1
and
|P(jw)la = —20 log w?T?, (44)

where the symbol |P(jw)|a, has the meaning ‘“approximate gain function.”’
The slope of. this high « portion of the decibel gain curve can be shown
to have a slope of —12 db per octave by the same procedure used pre-
viously (comparing | (jw)ls for ws and 2w,).
Let us now determine the value of w at which the low- [Eq. (43)] and
high-frequency [Eq. (44)] asymptotes intersect.

0 = —20 log w?T%;
w!T? = 1;
therefore
p— 1 .
I

In case the gain curve has a peak, it will occur at about this value of
w. The height of the gain curve above the 0-db level of the low-fre-
quency asymptote is found by substituting 1/7, for w in Eq. (42). It
is thus found that

1

P(jo) = % (45)
P(juw)| = 2%; (46)
| P (fuw) ldb = —20 log 2¢. 47)

This equation is of interest, since it gives us a direct relation between the
value of ¢ and the approximate height of the peak in the frequency gain
curve. Inspection of the equation shows that for values of ¢ less than
3, the decibel gain level is positive, indicating the presence of a peak.
For ¢ equal to %, the gain is 0 db; and for { greater than 4, the gain level
is negative, indicating a tapering off of the gain curve as it approaches
the high-frequency asymptote and the absence of a peak.

On the basis of the relations just reviewed, the procedure for plotting
the decibel gain function corresponding to a quadratic in the denominator
of a transfer function can be summarized as follows: (1) The point cor-
responding to w = 1/7T, is determined on the frequency axis. (2) The
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gain level at this point, or of the resonant peak if one exists, is given by
Eq. (47). (3) The low-frequency asymptote is given by the 0-db axis:
the high-frequency asymptote by a line drawn through w = 1/7, with
a slope of —12 db per octave. (4) The transition between the asymptotes
and the gain at w = 1/7, can be sketched in by hand; or if a more exact
determination of the decibel gain in the neighborhood of w = 1/7T, is
desired, it may be obtained by computing the values of |P(jw)ls corre-
sponding to different values of w substituted in Eq. (42), or from appro-
priate charts. (See Vol. 25 of this series.)

For a quadratic factor appearing in the numerator of a transfer func-
tion instead of in the denominator, these same rules apply except for
a reversal of the sign of the decibel gain level.  This will be evident from
a review of the development given above, but with the quadratic factor
shifted to the numerator.

A final question may be raised concerning the plotting procedure
appropriate when additional factors appear in the transfer function, as
in Eq. (48).

s(Ths + 1) - - - (T:%*+ 2(Tes + 1)
where 7, > T, > T,
The answer to this question becomes clear if we regard P(s) factored into
parts as given by Eq. (49).

(48)

- ~Tes+H 1
P(S) - PI(S)PZ(S) - S(TIS _+_ 1) T§82 + 2§_qu‘+' 1, (49)
where P1(s) stands for the factors involving Ty, Tz, . . ., T,_; and Pa(s)

stands for the quadratic factor. It will be evident that |P,(jw)lu can be
plotted by the procedures considered earlier and |P;(jw)|s by the method
just considered. Consequently, |P(jw)la, will be given by the sum of
these two gain curves. Hence, if a decibel plot has been made for Pi(s),
the quadratic factor is incorporated in this plot by locating on the high
w asymptote of the Pi(s) function the point corresponding to w = 1/T,.
To the right of this point a line is drawn at a slope of —12 db/octave
relative to the asymptote just to the left of this point, and the decibel
gain will correspond to that due to both the quadratic and P;(s) curves.
The result of this procedure is illustrated in Fig. 10-7 for the transfer
function of Eq. (49).

In the example just considered, the factors present in P,(s) are all of
the linear type. But the same principle of adding decibel gain curves
will, of course, hold even when P, (s) contains quadratic factors in addition
to the linear factors.

Decibel vs. Phase-margin Diagram.—The data represented in the
decibel vs. log frequency diagram may be plotted in a type of graph
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known as the phase-margin diagram.! The method of plotting consists
essentially in plotting decibel gain against phase angle ¢ in rectangular
coordinates and then relabeling the abscissa to give the phase angle in
terms of phase margin rather than phase angle. 'The phase margin ¢ in
such a diagram is defined as 180° minus the phase lag. Since the phase

P(jw)

4 —6db per Octave

/ —12 db per Octave

{ —-6db per Octave

-201og 2¢

—18 db per Qctave
~
~

!
|
|
I
!
!
|
!
|
!
1

W —>

N)I-————-—-—-——
-:Nl"'r___—

~

I

16, 10-7 —Asvmptotic gain curve for transfer function:

(Tws + 1) R
8(Ths + 1)(T %% + 2T¢s + 1)
with actual gain curve in vicinity of w = 1/7T,.

P(s) =

lag equals the negative of the phase angle,
¢)1 bl 1800 had ("¢) = 1800 + ¢

The above characterization of the phase-margin diagram is illustrated
in Fig. 10-8. We may think of the decibel gain and phase coordinates for
various values of w (e.g., ws, ws, we, etc.) as plotted in relation to the
coordinate axes drawn in solid lines. Then at a phase angle of —180°
a new vertical axis is drawn (shown as a broken line) and used as the
reference for phase-margin measurements. It is obvious from inspection
of the scales along the abscissa that the phase margin will equal 180° plus
the phase angle. In plotting frequency-response data in such a diagram,

tA. Sobezyk, RL Report No. 811, 1946; and D. P. Campbell, Nichols lecture,
loe. cit.  See also Vol. 25, Radiation Lahoratory Series.
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it will, of course, not be necessary to make use of the phase reference
axis, since the phase margin can easily be obtained from the phase angle
by adding 180°. It is of interest to note the likeness of the phase-
margin diagram to the transfer locus in that both involve essentially a
plot of gain against phase. The two differ in that the one is in rectangular
coordinates whereas the other is in polar coordinates and in the use of
the decibel scale for representing gain in the phase-margin diagram.

s-:'b m‘}’/ P ret. axis |, pret. axis

~90°  —45° OF Phase angle @
+90°  +135° +180° Phase margin gy

¥i1G. 10-8.—Phase-nargin diagramn.

10-4. The Interpretation of Frequency Diagrams.—The previous
section summarizes different ways in which the frequency-response curves
can be plotted. In the present section will be considered the ways in
which these graphs may be interpreted to yield predictions of the per-
formance of the system for various excitation conditions. Such esti-
mates are not limited to input signals of periodic character. The specific
question that this section will attempt to answer is this—from any given
type of graph, what predictions can be made concerning the performance
of the system represented? The discussion will be concerned principally
with the feedback transfer function KG(jw).

The Output Transfer Function.—In order to develop criteria for
interpretation of the transfer locus, it is helpful to consider first the
output transfer function and its relation to the transient response of the
system. From the correlations thus established, it will be possible to
proceed to the transfer locus, which represents the feedback transfer
function, and establish techniques for relating it to the transient response.
The amplitude and phase curves of 6,(jw)/0:(jw) may simply be plotted
as two separate curves as shown in Fig. 10-9. The logarithmic plot
need not be used.

A preliminary consideration of the response curves of an ideal system
(one in which the output follows the input immediately) indicates the
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bearing of the frequency-response curves on the transient response. In
an ideal system, the amplitude function will be equal to 1 and the phase
response equal to O for the entire frequency range from 0 to «.! A
system with such response curves would give perfect following, as is
evident from Fourier integral concepts. Thus, any nonperiodic input
disturbance can be represented by a specific continuous frequency
spectrum extending from — « to +«. If each of the component fre-
guencies is transmitted by the servo system without change in amplitude or
phase (as implied by a constant amplitude response of 1), then each of the
input frequencies will reappear at the output in its original magnitude
and phase. The recombination
of these component frequencies by
means of a Fourier synthesis will,
therefore, reproduce the original
input disturbance.

No physical system is, of
course, capable of showing this
ideal response. The same con-
cepts are, however, applicable.
The arbitrary input signal, ex-
pressed as a function of time, can
again be represented by a Fourier L
spectrum. The frequency- Fie. 10:9.—Amplitude and phase re-
response curves of the total systemn  sponse curves of output transfer function
will indicate the extent to which %°0«)/%Ge).
each frequency component in the signal is transmitted by the system, i.e.,
the change that it undergoes in amplitude and phase. More precisely, the
frequency-amplitude curve representing the input signal multiplied by the
amplitude transfer curve of the system will give the Fourier spectrum of
the output signal. The phase function of the output might be obtained
similarly by adding the phase function of the system to the phase function
representing the input time signal. The output signal expressed as a time
function, or transient response, may again be obtained by the Fourier
synthesis of the component frequencies. These considerations indicate
that it is reasonable to expect a correlation between the properties of the
transient-response and the frequency-response curvesfor the total system.

By way of a practical though approximate index of the transient
response, Hall has reported the following correlation, based on a com-
parison of frequency-response curves and transient response for the same
systems. The presence of peaks in the amplitude response is generally
associated with the occurrence of complex roots of the characteristic

8,jw) Gain function

8, (jw)

+
8

Phase function

Pljw) in degrees
R
88 o

]
~
~
(=]

i In a minimum phase system, the specification of a constant amplitude of 1 would
be sufficient to indicate a constant phase of 0.
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equation. The height of the peak, relative to the flat, low-frequency
part of the curve, is an index of the real part of the root, tending to
increase as the magnitude of the real part decreases. The angular
frequency at which the peak occurs is an index of the imaginary part of
the root, tending to increase as the magnitude of the imaginary part
increases. Hence the frequency of the peak will be an index of the fre-
quency of the oscillatory component of the transient response, and the
height an index of its damping.! In numerical terms, Hall states that
if the height of the peak (relative to the response at w = 0) is limited
to 14, then the damping ratio ¢ will lie between 0.5 and 0.8, and the
angular frequency of the peak will equal the frequency of oscillation to
within about 20 per cent. A damping ratio of about 0.8 has been pro-
posed as a useful practical standard in the design of many systems, for
it provides for a quick transient response with relatively little overshoot.?
Limitation of the resonant peak to 1§ thus provides a criterion that can
be used in adjusting the parameters of the system.

A possible qualitative basis for this type of correlation may exist in the rela-
tions derived in Sec. 10-3 between the damping ratio { and the form of the gain
curve of a transfer function consisting of a quadratic factor. Let us take as an
example a proportional servo system. Its feedback transfer function is

The output transfer function is found from this to be

Ou(s) _ _KG(s) ke
8:(s) 1+ KG(s)  Js*+fs + ke
1
=y (50)

%§+Fs+l

This equation can be written in terms of the relational parameters ¢ and 7, con-
sidered previously by setting

¢ = 3 \;m (nondimensional)
and
T, = \/g_ (with dimensions of sec).

1 It may be helpful to refer back at this point to Sec. 9-8 on the relation of the
transient response to the real and imaginary parts of the complex roots of a quadratic
characteristic equation.

*H. Harris, “The Analysis and Design of Servomechanisms,”” NDRC Report,
1942, p. 11, points out, however, that although this criterion is particularly useful
in the design of regulators, additional factors must be considered in the case of
servomechanisms.
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These parameters are exactly cquivalent to those considered previously, the
only difference being that here they are defined in terms of mechanical rather than
electrical physical parameters. Equation (50) written in terms of the pew
- parameters becomes
0.(s) 1
6:(s)  Th'+ AT+ 1

It will be noted that this equation is identical with that given previously
[Eq. (41)] in discussing the nature of the gain function plot of a quadratic factor.
Hence the conclusions derived then apply here, and the value of the gain function
at w = 1/T,, the approximate location of the peak in the 8,(jw)/6:(jw) function,

will be given by
tg,(.jw) -1
i(joo) P18
We thus find an inverse relationship between the damping ratio { and the height

of the peak that suggests the possibility of utilizing the height of the peak as an
index of the damping and stability of the system.

Transfer Locus—Although graphs of the output transfer function
are useful for estimating the performance of a system, they are not so
convenient as a basis for design as are the transfer loci. Certain of the
measures of performance given for the 8,(jw)/#:;(jw) curves are therefore
used in developing criteria that may be applied to the 6.(jw)/E(jw)
loci. In the design and adjustment of servo systems the goal of the
designer is to obtain a system that will be stable and will meet certain
specifications of accuracy. The following material on the interpretation
of transfer loci will therefore be considered in relation to these two
topics. .

Stability. —The criterion of servo-system stability utilized in the fre-
quency approach is based on Nyquist’s theoretical analysis of regenera-
tion in feedback amplifiers.! A servo system may be considered as
dynamically analogous to a negative feedback amplifier.? The criterion
of stability developed for the latter may, therefore, be carried over and
applied to servo systems.

To apply this criterion it is necessary to determine whether or not the
transfer locus of KG(jw), corresponding to values of w from — o« to
+ «, encircles the critical point —1 + j0.* If the locus encircles the

1H. Nyquist, “Regeneration Theory,” Bell System Tech. Jorr., 11, 125-147,
January 1932,

2See A. C. Hall, Analysis and Synthesis of Linear Servomechanisms, Technology
Press, Massachusetts Institute of Technology, 1943, pp. 34f.

3 Nyquist's criterion originally formulated (op. cit) for feedback amplifiers was

given in terms of the relation of the polar plot of the feedback function #8 to the point
+1 470. Since in terms of the symbols used here ¢ = KG(jw) and 8 = --1, the servo
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critical point, the system represented is unstable; otherwise it is stable.
Figure 10-10 shows examples of loci of the two types. A and B are
stable loci; C and D, unstable loci. The loci in the figure have been
drawn only for positive values of w. The part of any locus corresponding
to negative values of w will be the mirror image in the real axis of the
part drawn, since the value of the vector KG(jw,), for any specific fre-

quency w, will be the conjugate

% of the vector KG(- jw.,). The
g KGiw) locus corresponding to negative
®| plane  values of w may therefore be
E sketched in readily.
71440 5 In some cases, it may be difficult
-\B-/ 2 Tee  to decide whether or not the critical
point is enclosed. For such cases, the
following supplementary rule pro-
C KG(jw) posed by Nyquist is of help. Assume
plane  that a straight line is drawn between
=1440 the critical point — 1470 to any point
D on the locus of the function KG(jw).

As the frequency varies from + = to
— o, let the end of the line on the
locus trace out the locus, while the
end of the line at the critical point
remains fixed. If the final angle (net
angle) of swing of the straight line is

Fia. 10-10.—Examples of transfer loci 2ero as the frequency varies from
representing stable (A and B) and unstable o to — o, then the system is
(€ and D) servo systems. stable; if it is different from zero, the
system is unstable.! The unstable systems of Fig. 10:10 may be used as examples
in trying out this method. In applying the rule, a pencil laid over the graph may
be used to represent the straight line.

Special difficulties of interpretation may arise in the case of loci that
extend to « along the negative real axis such as that of B of Fig. 10-10.
In applying the Nyquist criterion to loci of this type, the part of the
locus approaching — « should be regarded as connected by a circle of

feedback transfer function would be represented as — KG(jw) and its relation to the
point +1 +jO determined. The stability criterion can, however, be just as well
formulated in terms of the relation of +KG(jw) to the —1 470 point, which is equiva-
lent to the relation of —uB to the +1 +;0 point. The tendency has been for the
Nyquist eriterion to be used in this form. See, for example, Hall, op. cit.,, p. 36;
and H. W. Bode, Bell System Tech. Jour., 19, 421454, July 1940. For a discussion of
Nyquist’s criterion in relation to complex function theory, see H. W. Bode, Network
Analysis and Feedback Amplifier Design, Van Nostrand, New York, 1945, pp. 137-169.
t Taken, with slight modifications, from Hall, op. cit., pp. 35f.
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The appropriateness of this

procedure becomes clear when it is noted that vectors corresponding to

| KG(jw) plane
/,,- .!'\\\\ w-Olr'—~\\
/ s ) |8 S
/ 2 A AY
© \ ne \
/ c 2
/ ® \ /1 \\
/ E \ [/ E \
w=0L___.-"" { "1"']0 = \
w=0{ 1440 Real axis ,f ~ Real axis ,'
/ /
\\ / ,/
\\ // /s
~o _- 7~
ke dua W= -
(a) )

Fi6. 10-11.—Use of infinite circle in application of Nyquist's criterion for stability.

positive frequencies (solid line) are approaching a phase angle of —180°

as w — 0, whereas vectors corre-
sponding to negative frequencies
are approaching a phase angle of
+180° as w— 0. 'These phase
angles are therefore to be regarded
as 360° apart.!

Loci such as E of Fig. 10-12
have given rise to a distinction
between ‘“‘absolute’ stability and
‘““conditional” stability.? Curve
E, represents a “conditionally”
stable system. As drawn here the
locus does not enclose the critical
point. The corresponding system
is therefore stable. If, however,
the gain of the system is increased,
to give Curve E, asitslocus, or the
gain is decreased, to give Curve E;
as its locus, then the system is no
longerstable. Theterm *“ Nyquist

stability” has also been used as a synonym for

Imaginary
axis

KG(jw)
E, plane
Vo
T
Stable system

Real axis

£,

W e
\/ \_/
Gain increased
Unstable system

Ey

P

— Y
Gain decreased
Unstable system

F1a. 10-12.—Effect of variation in gain
on transfer locus of system with conditional
or ‘' Nyquist stability.”

‘““conditional” stability.

' See Hall, op. cit., p. 40; Brown and Hall, op. cit,, p. 28; and McColl, Servo-
mechanisms, Van Nostrand, New York, 1945, pp. 28f.

28ee H. W. Bode, Bell System Tech. Jour., 198, 421454, July 1940; and Network
Analysis and Feedback Amplifier Design, pp. 162-164,
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Nyquist stability is not, in general, satisfactory in a servo system, since
changes in any of the factors that influence the over-ull gain (such as loss
of tube gain with age or increase of tube gain from zero as power is first
applied to the amplifier)! may result in an unstable system.
In the adjustment of a servo system in order to provide stability,
it is evident that a system which barely passed the test of stability (e.g.,
curve S of Fig. 10-13) might not be satisfactory. Slight uncontrollable
changes in the parameters of the system, such as occur in aging, might
produce sufficient change in the
locus of the system to move it over
KG(jw)plane to the other side of the critical
stability point (curve (7 of Fig.
S 10-9). In the adjustment of such
systems, it has, therefore, been
found desirable to provide margins
of safety. Bode? has discussed the
theoretical considerations involved
in the selection of such margins in
the design of feedback amplifiers
and introduces the concepts of phase
and gain margins.? Ferrell® in dis-
Fic. 10-13.—Diagram illustrating the cussing the application of Bode’s
need for safety margins in the adjustment  {iaatment to servo systems states
of stability. . .
that a phase margin of between 40°
and 60° and a gain margin of 10 to 20 db constitute good design practice.
These criteria mean that at the frequency at which the gain has fallen to 0
db, the phase margin should be not less than 40° to 60° (i.e., the phase lag
should not exceed 120° to 140°); when the phase lag has reached 180°,
the gain in decibels should have fallen to between —10 and —20 db.
Hence in the interpretation of loci, one must determine not only whether
or not the system represented is stable but also whether or not adequate
or standard margins of safety have been provided.
It should be noted that the principles given above relative to system

Critical point

! This type of situation may lead to damage to the system due to excessive oscilla-
tions that may occur for low-gain values of the amplifier before the system becomes
stable at the higher-gain values associated with steady-state temperature of the tube
cathodes.

2H. W. Bode, “Relations between Attenuation and Phase in Feedback Amplifier
Design,” Bell System Tech. Jour., 19, 433436, July 1940.

3 The term phase margin has already been introduced, it will be recalled, in Sec.
10-3, in the description given of a method for plotting decibel-phase-margin diagrams.

4 Ferrell, “The Servo Problem as a Transmission Problem,” Proc. IRE, 88, 763 -767,
November 1945.
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stability apply equally well to regulalors,' that is to say, to systems
designed to maintain some property consfant on the busis of a feedback
loop. A regulator can be regarded as a servo system in which the input
function 6;(f) is constant. A block diagram of a d-c¢ voltage regulator
regarded from this point of view is given in Fig. 10-14. Comparison of
this diagram with one used to represent a servo system (e.g., Fig. 9-8)
shows that there are no essential differences in the structure of the two
systems. The differences consist rather in the nature of the disturbances
that tend to produce variations in the output quantity e,(¢). In the
voltage regulator, the origin of such variations is in the d-¢ voltage source
applied to the regulator tube and in the parameters of the load circuit

Comparison amplifier

D-c voltage source
and error detector g

e;(t) E(t) e.(t) Regulator e,(t)
kg tube >
and load
Standard Error Controlling
voltage voltage voltage

I'16. 10-14 -—DBlock diagrain of voltage regulator.

rather than in the input forcing function e¢;(¢). Since the latter is pur-
posely kept constant, the output response e,(f) tends to return to this
same value following disturbances in the voltage source or in the load.

Accuracy.—As shown above, the transfer locus provides a simple and
precise basis for inferences concerning the stability of a system. It is
much less satisfactory as a basis for estimates of accuracy. These
limitations are not, however, inherent in the frequency approach. As we
shall see, a shift to the decibel log frequency methods of representation
permits certain conventional estimates of servo error to be made with
considerable precision. Before going on to consider these procedures, let
us review the chief relations that have been established between transfer
loci and measures of servo error. Hall? has pointed out an interesting
series of relations between conditions of zero steady-state error and the
shape of the locus as the angular frequency w approaches zero. These
correlations are represented in Fig. 10-15.

In systems with zero displacement error, the locus approaches « along
the negative imaginary aris as w approaches zero. This relationship is
shown in Fig. 10-15a. The specification of a zero displacement error
means that the steady-state value of the error will be zero if the input

1 8ee Sec. 83 for a definition of regulators.
2 Hall, op. cit., pp. 38-41.
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6:(t) consists of a fired displacement, such as occurs in the case of a step-
function input.

In systems with zero velocity error, the locus of the transfer function
approaches © along the negative real axis as w approaches zero.  This rela-
tion is shown in Iig. 10-150. The
specification of zero velseity error
means that the steady-state error
will be zero if the input 6,(¢) con-
sists of a fixed velocity, such as
—140 occurs for a step-velocity input.

* In systems with zero acceleration
error, the locus approaches « along
A the positive imaginary axis as o
approaches zero. This is shown in
Fig. 10-15¢. Specification of zero
acceleration error means that the
steady-state error will be zero for
a fixed input acceleration.

It is evident that as the order

KG(jw) plane

(]

Imaginary axis

@ KG(jw) of the zero steady-state error

—140 /\\ R:’:';;s increases, the axis along which the
_\] 5 locus approaches « (when w — 0)
B | shifts progressively in a clockwise

® direction. We might, on this

basis, readily lay down the require-

“ ments for zero steady-state errors

= of still higher order. But systems

E are seldom required to meet such

‘@ KG(jw) plane higher-order specifications, since

E the input functions that occur

-14350 N Real axis commonly do not tend to show
\_/ |o constancy in the higher-order de-

g) rivatives of the displacement.

F16. 10-15.—Transfer locus diagrams repre- Input’S approximating constant
senting systems with zero steady-state errors. velocities (the first derivative of
Srtors nd (5 ore secetaration sreer, %Y the displacement) are probably

most common.

The correlations just given are useful in comparing a proposed servo-
system with performance specifications. By noting whether or not the
low-frequency end of a given locus approaches = along the correct
axis, one may determine the nature of corrections needed in the system
to provide a locus of the required type.

What is the reason for these correlations? To understand them, two
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facts must be considered: (1) the properties that specification of a given
steady-state error as zero imposes on the transfer function KG(s) and
(2) the nature of the behavior of the corresponding KG(jw) function as
w— 0.

The first relationship is made concrete by considering a specific systen,
such as the proportional servo of previous illustrations. Its error func-
tion is

Js? + fs
Jst + fs + ko

Suppose the system is required to have a zero displacement error. This
implies that when 6,(¢) is a step function, there must be no constant terms
in the solution E(¢). Substituting 1/s for 8;(s),

vy JsE+ Js

B = ey 75
If there were no factor s in the numerator to cancel the s introduced into
the denominator by 6,(s), then, upon application of the inverse Laplace
transformation, there would be a constant term in the equation for E(¢),
corresponding to the factor s in the denominator of E(s). This follows
from transform pair (a) of Table 9-1a, and (e¢) of Table 9-1b. The
constant term would constitute the steady-state error, since it would be
unchanged as { » «. Hence, specification of a zero steady-state error
requires absence of s as a separate factor in the denominator of E(s).

But since an s is introduced into the denominator by 8(s), a factor s
must be present in the numerator of the transfer function E(s)/6:(s) to
cancel it. This requirement is met in the case of Eq. (51b) of our example,
since an s factor is available in the numerator to cancel that of the denomi-
nator. But we know that the numerator of the error transfer function
E(s)/6:(s) is identical with the denominator of the feedback-transfer
function KG(s), as will be evident from inspection of Eqgs. (9.22) and (9.47)
showing derivation of E(s)/8;(s) from KG(s). Therefore to cancel a first-
order pole introduced by 6.(s) into E(s), there must be a first-order pole in
KG(s); to cancel a second-order pole, there must be a second-order pole
in KG(s); and so on.

Hence, specification of zero displacement error means that KG(s) is
of the form

E(s) = 6:(s). (51a)

%' (510)

KGl(S) — (S + al)(s + a2)(s + (13) tot

oG F b0+ b5+ ba) - (52a)
Specification of zero velocity error implies KG(s) is of form
KGy(s) = ST als+a)s+ay) - - - (52b)

82(s 4+ b)) (s + ba)(s + ba) - - -

and so on
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We are now ready to consider the nature of the transter loci corre-
sponding to Eqs. (52a) and (52b). The frequency-transfer function corre-
sponding to Eq. (52a) will be

(Jo + a))(jo + a2) (o + as) - - -
Jo(jw + by) (Jo + ba)(Jo + ba) - - -

What happens to the various factors as o approaches zero? Each
of the factors of the form (jw + a) and (jw 4+ b) are complex numbers.
The terms represented by ai, as, as, . . . , and by, by, b3, . . . , may be
real or complex. As w — 0, jw becomes negligible relative to the other
part of the factor; therefore the jw term inside each parenthesis can be
neglected, and each factor can be approximated by its root alone.

KG(ju) =

(52¢)

Therefore
lim KGi(jw) ~ 319283 ° ° " . (53a)
wo0 Fa(bibaby) - - -

The products @iazasaq . . . and bibsbsbs . . . will be real, since if

any of the single roots is complex, it will be paired with a conjugate
root and the product of the two will be real. The right-hand side of
Eq. (563a) will therefore be an imaginary number that approaches —j«=
as w approaches zero. Hence the function KG; (jw) will approach infinity
along the —j axis as w approaches zero.

A similar line of reasoning indicates that if a zero velocity error is
prescribed, then 6;(s) is represented by N/s?, and KG,(s) must contain an
s* term in its denominator, as shown by Eq. (52b). The corresponding
frequency-transfer function is

(et a)(e +ag) -t 0 (Ju + a.)
KGy(jw) = 770G + b)Go + b2) - - - (o T bn)
_ o+ a)(u+a) - - - (u+ta.)
—0?(Jw + b)) + b2) - - - (Gw + b))’
therefore
: sy Q10283 * ° " Qn
ilfOKGz(Jw) = —wbibsbs - - - ba (53b)

This is a real number which will lie on the negative real axis and will
approach — « as w approaches zero. Hence the function KGs(jw) will
approach = along the negative real axis as w approaches zero.

We might proceed by a similar line of reasoning to sketch the behavior,
in the low-frequency region, of the transfer loci corresponding to zero
steady-state errors of still higher orders. The examples given above,
however, should be sufficient. It may be of interest, before leaving this
topic, to note the characteristics of the transfer function KG(jw) which
determine the behavior of the locus at its high-frequency end. As Hall
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points out,! the behavior of the locus in this region depends on the order
of the transfer function. The order of the transfer function may be
defined, on the basis of the following equation, as the difference (¢ — p).

Ly gw)”
GG = Gayr (64)
This equation shows the form taken by the frequency-transfer function
representing any given system, [Eq. (52¢)] for large values of w. As
w — =, the transfer locus will approach zero from a direction determined
by the order (¢ — p). Thus, if (¢ — p) = 2, Eq. (54) becomes
e 1
(Gu)r  Ge)? W
ie, G(jw)lew - — — 1/w? For large values of w, the transfer locus
approaches zero along the negative real axis.
If (¢ — p) is assumed to equal 3, Eq. (54) becomes
. 1 1 .1
Gjo))us « = G;)f‘ = — ;‘? = +];
For large values of w, G(jw) approaches 0 along the + imaginary axis.
If (¢ — p) is assumed to equal 4, Eq. (54) becomes

. 1
GGl e = (s
For large values of w, G(jw) approaches 0 along the 4 real axis. The
shape of the locus at the high-frequency end may thus be readily deter-
mined from the order of the transfer function.

As Hall points out, the interpretation thus indicated for different
regions of the locus permits the locus of a given system to be sketched
rapidly with a minimum of computation. The shape of the locus at the
high-frequency end is indicated by the order of the transfer function,
whieh is determined by the number of energy-storage devices in the sys-
tem. The shape at the low-frequency end is indicated by the specifica-
tions regarding the required zero steady-state error.  Finally, the required
relation of the locus to the critical point (—1 4+ jO) is indicated by
Nyquist’s stability criterion.

In its ability to provide estimates of the transient error, the frequency
approach, as represented by curves of the output transfer function or by
transfer locus plots, is again not quite satisfactory. The decibel-log
plots here, too, turn out to be somewhat more useful. Some general
correlations have, however, been reported. It will be recalled from

G(je)lom =

1
=+;4.

' Hall, op. cit., pp. 411.
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Sec. 9-8 that the magnitude of real roots of the characteristic equation of
the error function, if negative, determines the rate of decay of exponential
components of the error response and that the magnitude of the real
part of complex roots, if negative, determines the rate of decay of any
oscillatory component. In both cases, the greater the absolute magnitude
(of the real root, or the real part of a complex root) the more rapid is
the decay, that is, the shorter is the transient. Hall! reports, from his
comparison of transient and frequency-response curves, that the height
of the peak of the amplitude curve of the output transfer function
can be used as an index of the size of real roots and the real parts of
complex roots. He states that in order for these to be large, ““the peaks
in the amplitude response function must be limited in magnitude and
occur at large frequencies.”

The specification concerning the peaks in the amplitude function
can be carried over to the transfer locus. A simple geometrical procedure
to be described in Sec. 10-5 permits one to determine, on the locus, the
frequency at which such a peak in the amplitude response {of ,(jw)/8:(jw)]
will oceur.  The reported association between high frequency of the peak

and short duration of the transient,
A. Stable system  g1though not particularly useful in
making possible quantitative esti-

% P;;iat;‘f mates of the duration of the tran-
180 © margin  sient, will be found of value in the
" design of corrective devices that
g are intended to bring about an
2 B increase in frequency of the peak
£ £ through a counter-clockwise rota-
é g tion of the transfer locus.

-9 Gain B. Unstable system Dectbel-log Frequency Diagrams.

The data represented in the feed-

Negative  hack transfer function can be plot-
phase .

margin  ted as a log-log plot in the way

-180 0 TR - already described, instead of as a

Z\ polar plot of gain against phase,

~ This type of plot, although based

F1g. 10-16.—Decibel vs. log frequency on the same data, represents it in

Birves in stable and unstanie systems. @ different manner and is more

useful for some purposes. As was

to be expected, we find some of the same criteria discussed in the section

above reformulated in terms of the new curves. The interpretation of

these curves is considered here, too, in relation to the topics of stability

and accuracy.

)—-—-O———-O-—cg\
Phase N

t Hall, op. cit. p. 17.
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Stability.—Figure 10-16 shows decibel-log w plots of stable and
unstable systems such as are represented in the polar plots of Fig. 10-10:
The upper curves (A) correspond to a stable system; and the lower curves
(B) to an unstable system. Nyquist’s criterion is again used but formu-
lated now in terms of the new method of representation.

It will be sufficient to formulate the criterion for an absolutely stable
system, such as those represented by Curves A and B of Fig. 10-10.!
In terms of Nyquist’s criterion, the essential requirement for the system
to be stable? is that the gain be less than one by the time, with increasing
frequency, the phase lag reaches 180°. In our db-log w diagram of
Fig. 10-16 the gain and phase curves are plotted relative to the same axis.
The horizontal axis, for the gain curve, indicates 0 db. Regions below
the axis indicate gains less than

one. For the phase’ curve, the i’»
horizontal axis represents a phase g )
lag of 180°, and regions below the _-_'590 £
axis, phase lags greater than 180°. 2 &
If the gain and phase curves cross £
the axis at the same point (as in -

Fig. 10-17), it would mean that at
the frequency at which the phase
lag reached 180° the gain was N
exactly one. Thiscondition would i

Fia. 10:17.—Decibel vs. log {requency
correspond to a transfer locus giagram of a system just at the boundary
crossing the negative real axis at line between sta_bility and instability. Gain
the critical stability point — 1 + jo, "¢ Phase margins are sero.
The system would therefore be unstable. In order for the system to be
stable, the gain must be less than one at this value of the phase. Con-
sequently, Nyquist’s criterion may be formulated as follows. In an
absolutely stable system, the gain curve must cross the 0-db axis at a lower
frequency than that at which the phase curve crosses the —180° phase axis.
In the diagram, the phase crossover point must lie to the right of the
gain crossover point, as in Fig. 10-16a.

Stability Margins.—The rule just stated may now be reformulated
to provide the margins of safety considered in connection with transfer
loci. Ferrell, it will be recalled, -proposed as good design practice a
phase margin of 40° to 60° at the gain crossover point and a gain margin
of 10 to 20 db at the phase crossover point. The definitions given of gain
and phase margins are illustrated in Fig. 10-2.

108 w

LThe reader, if he so desires, should have no difficulty in formulating a similar rule
sufficiently general to include conditionally stable systems, through inspection of
Fig. 10-12 and equivalent curves drawn for a decibel-log w plot.

* See, for example, H. W. Bode, Bell System Tech. Jour., 19, 432, July 1940.
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Accuracy. —Ferrell' has pointed out that the asymptotic decibel-log o
gain curve may be used to provide measures of system accuracy. His
method is important, since it makes up for what was previously a defi-
ciency in the frequency approach. Ferrell’s derivation of the method is
given only for the proportional servo system, characterized by a second-
order transfer function. In the present discussion, a brief summary of
Ferrell’s account will be given first, retaining the symbols used by him to
represent measures of servo-system error. The relation of his parameters
to the time-constant set (k,, T, w,) described in Sec. 9-8 will be pointed
out, and finally a proof will be given of the applicability of Ferrell’s
method to determination of the steady-state velocity error of systems
with higher-order transfer functions.

Ferrell’s method may be understood by reference to the asymptotic
plot of Fig. 10-3, which gives the curve for the loop gain u of a proportional
servo system. The equation given for u, the loop gain of the system
[equivalent to our feedback transfer function KG(s)], is?

_ Smﬂ-m
STk +
where 8. = conversion constant of a potentiometer that converts input
mechanical displacement to volts,
um = Iotor conversion constant, in torque units per volt,
S = elastance or stiffness of the motor load,
R = resistance of the load, regarded as including both the motor’s
internal resistance and the viscous friction of the load,
J = inertia of the load,

(55)

p = differential operator d/dt.
The equation given for the error Af is
0
Al = — 56
: (56)

Here 6 is regarded as representing either the input 6; or the output 6.,
an approximation considered justifiable by Ferrell when the loop gain u
is assumed to be very large. On this basis, this equation can be regarded
as merely equivalent to the definition of the loop gain, stating (after
interchanging p and Af) that the loop gain equals the output divided by
the error.

! E. B. Ferrell, “The Servo Problem as a Transmission Problem,” Bell Telephone
Lahoratories Report No. MM45-180-6, Jan. 27, 1945; also Proc. IRE, 88, 763-767,
November 1945.

2 This equation corresponds to Fq, (9-21), Sec. 9:3. The only difference in the
systems represented is that Ferrell regards the output or load member as including
elastance, represented by the parameter S, in addition to inertia and dissipative
parameters.
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If, now, it is assumed that the load elastance S = 0 and the terms
wo and w; are substituted in Eq. (565), then it can be rewritten

Wol1

=, 57
K p(P + w1) (57)
where
— Snttm
Wo = R )
and
_E
w; = J
If this value of u is substituted in Eq. (56), we obtain
Ag = PP T @), P+ poid
wWowy wWow1
2
=Eo+p_6=i9/+ig". (58)
wo Wow1 wo wow1

Equation (58) states that the error A6 may be regarded as made up of
two parts, a velocity error (1/wo)6’, which is proportional to the velocity
¢ (of input or output), and an acceleration error (1/wew1)8’’, which is
proportional to the acceleration 8" (of input or output). The propor-
tionality factor for the velocity error is 1/wp and for the acceleration error
is 1/wowi. Hence, if 6’ and 6" are regarded as determinable from the
input function, then these two components of the error could be computed
if the values of wo and w; or wow; were known. Turning now to the
decibel gain curve (Fig. 10-3), Ferrell states that the values of the ““inter-
cept points’” wo, wi and v/wow: can be determined as follows: The inter-
section of the straight line representing the low-frequency part of the
curve with the zero db axis is wo; the intersection of the second segment,
the “higher-frequency line”’ is v/wow;; and the value of w at which the
two lines intersect, the “corner-frequency”, is w;. Thus if an asymptotic
gain plot is available, the proportionality factors in Eq. (58) can be
computed.

The smaller these proportionality constants the smaller will be the
total error. Hence, large values of wo and wiwo will correspond to small
values of the error. Consequently, the further toward the high-frequency
end of the curve thal these intercept points occur the smaller will be the
servo error. This important correlation is the one proposed by Ferrell
for use as an index of error of the system.

It is of interest now to determine how the intercept points wo, w,
and v/wew1 may be defined in terms of the relational parameters k., 7,
and w, introduced in See. 9-8 in our discussion of the transient response
of a servo system.  The two sets of parameters may be related by con-
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sidering how the members of each set are defined in terms of physical
or dimensional parameters. The dimensional parameters S.,un, K, and
J used by Ferrell are equivalent to k,, f, and J, respectively, the symbols
used in Sec. 9-8. Ferrell’s intercept parameters may therefore be trans-
lated into the previously introduced relational parameters as follows:

—  Swbm _ ko
wo = R -

>
<

b

e

w; = =

7
St ko

\/wowl \/ J# = JJ = Wn.

Ferrell’s parameters are shown in the first two columns of Eq. (59), and

ours in the last two.' To complete the set of relations between the two

sets of parameters, it is of interest to compute the value of the damping

ratio ¢ in terms of the intercept parameters.

=
AT

(59)

i

f 1 w1 . 1 O.Tl

FT Vi T 2 Ve " 2w

A performance property of considerable importance in many instru-
ment servo systems is the steady-state velocity error. In Sec. 9-9, a
method was described for computing it by means of the final value
thecrem, a procedure that may be considered a short-cut variant of the
transient approach. l.et us now consider how it might be determined
by the application of Ferrell’s intercept method. Consider first Ferrell’s
formulation, in Eq. (58), of the error equation for a second-order system.
If, as is necessary in computing the steady-state velocity error, the
input function is assumed to have a constant slope, say N, then at values
of ¢t > 0, d*8/dt? equals zero, and Eq. (58) becomes

1 N

Thus the steady-state velocity error can be found simply by determining
the value of k, on the decibel-log w diagram and dividing it into the slope
N of the input function. Even where the decibel-log w gain curve has
been plotted from empirical data rather than a known feedback transfer
function, it is possible to determine graphically the asymptote to the
low-frequency end of the curve and thus determine its intersection with
the 0-db axis, which will equal w, or k..

! In Fig. 10-3 it may be noted that the intercept points are labeled in terms of both
types of parameter, the designation in terms of Ferrell’s symbols being given above the
point and in terms of the &y, 7') «, set of parameters helow the point.
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The simplicity of the method suggests that it may prove an extremely
useful procedure. It is therefore natural to inquire whether or not it
can be used in the case of higher-order transfer functions as well as for the
second-order system discussed by Ferrell.

Let the feedback transfer function of the system be given by Eq. (60)
written in terms of the time-constant set of relational parameters. The
order of the trans er function will equal the number of factors contain-
ing w.in the denominator minus the number in numerator. Only one
factor is shown in the numerator in order to keep the expression as simple
as possible, but this does not alter the logic involved.

Ba(jw) _ koo T + 1) ,
E(jw)  Jo(joT: + D@GeT: + 1) - - - (joTa + 1)
T,>T2 e > T (60)
Ooj)] _, L 1 ‘ RS S
EGo) = ' oo + 1y Vel T 55 T T F1 el 1]

on the basis of the same line of reasoning followed in Sec. 10-3. At the
low-frequency end of the decibel curve, that is, for

w<K1/Ty<1/Ty - - - < l/T and w K 1/T,,
0o(jw)
~ k= \
E (o) 61,

since all terms of the form |jw7; + 1| will approximately equal 1.
Therefore

0. (jw)
E(jow)

=~ 20 log ky — 20 log w. 62)
db
Thus the first segment of the asymptotic gain curve is the same regardless
of the number of factors of the form (jwT» + 1) in either numerator or
denominator, since these all reduce to 1. Hence its intercept with the
0-db axis will be independer.t, of the number of such factors in numerator
or denominator. The value of this intercept is easily shown to equal k.,
by setting the left-hand side of Eq. (62) equal to 0.

0 = 20 log k, — 20 log w
20 lug w = 20 log k.
w = k.

It is necessary now to show only that 1/k, is always the velocity error
constant of the sysfem, i.e., that k&, is the constant which, when divided
into the slope of the velocity input function, gives the steady-state
velocity error. ‘This may be done by computing the steady-state velocity
error E, in the asual way, from 60,(s)/E(s). This transfer function is
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given by Iiq. (63) with s substituted for juw.

buls) _ hu(Tws+ 1) _
KOO =30 = sw ¥ DT+ 0 - - Tw+ 1)
Applying Eq. (12) (Sec. 9-5) and substituting N/s* for 8.(s),

E(s) =

(63)

1
e COR
1 N
ko (Tas + 1) 7
s(Ts + D(Tes + 1) (Tus + D

Es) = s(T1s + 1)(Ts + D - (Tws + DN

T ETs F DT+ 1) - (Tas + 1) 4 F(Tes + D]
Applying the Laplace transformation final value theorem (assuming
that the specification is met concerning absence of poles on the jw axis
or in the right-half plane),

1+

B, - ss(Ts + - (Tws+ DN
wo[ s(Tws + 1) - (Tus + 1) + ko(Tas + D]s?
N
=

since all terms of the form (1s + 1) approach one.

Thus we see that for the type of system represented above k, is the
veloeity error constant regardless of the number of factors of the form
(Txs + 1) contained in numerator or denominator.’ By similir rea-
soning if the first factor in the denominator of Fq. (60) i3 (jw)? rather
than (jw), then ky, = w® and F{¢) = ()N /k,.  In this case, the velocity
error constant is zero regardless of the value of k..

Decibel Phase-margin.  Diagram—The phase-margin diagram is
notable for the simple form that Nyquist’s criterion assumes when it is
reformulated for use with this type of diagram. Figure 10-18 shows a
family of curves representing a proportional servo system plotted for
different values of the damping ratio . The system is that defined by
the transfer function of Eq. (21) (Sec. 9-7). In terms of Nyquist’s
criterion, any given curve indicates an unstable system if, as w increases,
the curve crosses the zero phase-margin axis (Y-axis) before it crosses the
0-db axis (z-axis). Any given curve is regarded as proceeding from
above downward, i.e., from low to high values of w. If the curve crosses
the 0-db axis before reaching the zero-phase-margin axis, its phase

! This statement should not be taken to mean that the value of k. will be the same
regardless of the number and kind of energy-storage components or phase-advance
components in the physical system. It means only that once k., has been correctly

determined for the over-all system in the way described in See. 10-3, then it can be
regarded as the velocity error constant of the system.
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margin at 0 db can immediately be read from the graph. Or if it
is an unstable system, its phase-margin deficiency is equally directly
perceptible.

In the provision of indices of accuracy, the phase-margin diagram is
of no particular value. For this purpose the decibel-log w diagrams
described above should be used.

10-56. Operations on Frequency |
Diagrams.—In the present section +40¢ I
are collected the chief operations |
that may be performed on the +30¢ '
various types of frequency dia- '
gram. These operations are uti-

+20

lized in the design of corrective |

; ; Phase
devices for co'mp.ensatlng for +10|  margin
system deficiencies. Some of in degrees
them also find a use as graphical § l
substitutes for computation. £ EY 100

(]

Operations on Transfer Loci:
Graphical Computation of the Out-
put and Error Transfer Functions.
The operations represented ‘n Eqgs.
(9-12), and (9-14), giving output
and error transfer functions in
terms of KG(jw), may be carried
out graphically.! The only re-
quirement is a plot of the transfer
locus KG(jw). Consider first the
prOCedure used to find the output, FIG.‘10-18.—Phase-margin fiiagrams for a
transer Tunction 6,(is)/0s). BEbuomleososem, Dot npves
Figure 10-1 shows a representative decreases, the phase margin decreases for a
transfer locus, with a vector drawn ~ B'Ven 831

to the point C, corresponding to the frequency w.. Now

() _ KG(s)

0:(jw) 1+ KG(jw)
The vector representing KG(jw) is OC, since by definition, all points on
the locus represent the function KG(jw). If we add the vector 1 (repre-
sented by AO) to KG(jw), we obtain

1 4+ KG(juw) = AO + OC = AC.

! See H. Harris, “The Analysis and Design of Servomechanisms,”” NDRC Report,
1942, pp. 51ff.; and A. C. Hall, Analysis and Synthesis of Linear Servomechanisms,
Technology Press, Massachusetts Institute of Technology, 1943, pp. 30-33, for further
details.
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Therefore, |KG|/|1 + KG| = |OC|/|AC|; consequently, |KG|/|1 + KG|,
L 0,(jw)
which is equal to 8: ()
the length of AC.

The phase of 8,(jw)/60:(jw) = phase angle of KG(jw) minus phase angle
of 1 + KG) = a — 8 = 8. The sign of é§ will be negative. Thus the
phase of 6,(jw)/6:(jw) is given in magnitude by the angle between the
vectors representing KG(jw) and 1 4+ KG(jw) and is negative in sign.

The same procedure, carried through for a range of values of w, per-
mits the frequency-response data for the amplitude and phase curves of
6,(jw)/0:(jw) to be obtained. These curves may be sketched in approxi-
mately simply by inspection of the transfer locus, or they can be deter-
mined more precisely by use of a protractor for measuring angles and
dividers and ruler for measuring vector lengths.

A similar procedure can be used for graphical computation of the
error transfer function E(jw)/0:(jw), as shown by Fig. 10-1. At any
angular frequency w.,

may be found by dividing the length of OC by

EGo) _ 1
8:(jw) ~ 1+ KG(jw)
EGol_ 1 _ 1
6:jw)| |1 + KG| ~ AC
The phase of E(jw)/6;(ju) =0 — 8= — 8. This procedure carried

through for the range of value of w gives the necessary data for plotting
the function E(jw)/6 (jw).

A second method for graphical determination of the output transfer
function 6,(jw)/8:(jw) from the transfer locus depends on the plotting of
transfer locus curves for which 6,(jw)/8;(jw) is a constant. On a transfer
locus plot, these curves are circles whose radius and position are a function
of the constant, to be designated as R. Figure 10-19, taken from Harris!
shows the family of circles corresponding to different values of R. A
similar family of curves exists for the phase angle ¢.2 If the family of
curves of constant R are superimposed on the transfer locus 4 of a
particular system, then the amplitude function of 6,(jw)/6:(jw) for that
system can be determined from the points where locus 4 intersects the
curves of constant E. For any given intersection, the value of w is
given by the w of that point on the locus A. The corresponding value
of the amplitude ratio 6,(jw)/8:(jw) is given by the R of that particular
circle. The same procedure is used in finding the coordinates of the
intersections with all other circles. One thus assembles a series of pairs

" Harris, op. cit.,, p. 5la. Harris uses the symbol (GH) in place of the symbol used

here of K@ for the feedback transfer function.
2 Ibid., p. 55a.
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of values representing 6,(jw)/0;(jw) as a function of w. The same pro-
cedure carried out with the curves of constant phase superimposed on
~ the locus A permits the phase-response curve for 6,(jw)/6;(jw) to be
determined.!

At this point, it is convenient to indicate a way in which the circles
of constant M may be used, in conjunction with the transfer locus, to
indicate the frequency at which a peak will occur in the 8,(jw)/6;(jw)

KG (8) plane

Fia. 10-19.—Transfer locus corresponding to constant |8o(jw)/8;(jw)| ratios. (Based on
Harris, ' The Analysis and Design of Servomechanisms,”” NDRC Report, 1942, Fig. 25.)

amplitude curve and the height of this peak.? The transfer locus KG(jw)
is first plotted, and the family of circles of constant M superimposed
upon it. Then the point of tangency of the circle that is tangent to the
locus will indicate the frequency of either a maximum or minimum of the
amplitude curve. The magnitude of the amplitude relation at this point
will be given by the M characteristic of that circle or can be found by
dividing the length of the KG(jw) vector by that of the [1 + KG(jw)]
vector in the manner described some paragraphs earlier (i.e., in Fig.
101 OC is divided by AC). Whether this point gives a maximum or a

t The derivation of the formulas used in plotting the curves of constant amplitude
may be found in Hall, op. cit., pp. 50ff. Expositions of this method are given by both
Harris, op. cit.,, pp. 51f., and Hall, op. cit., pp. 50-54. Hall uses the symbol M for
the constant-amplitude ratio in place of B. His formulas for the points used in plot-
ting the circles of constant amplitude are ¢ = —M?*/(M? — 1), where ¢ is the number
specifying location of the center of circle in the complex plane, and r = M /(M? + 1),
where 7 is the radius of the circle. The formula for ¢ shows that the center of the
circle will lie on the negative real axis when M > 1 and on the positive real axis
when M < 1.

2 A description of the method is given by Hall, op. cit., pp. 49-52.
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minimum can be easily determined by finding the amplitude ratio for a
few points adjacent to the point of tangency, by either of the graphical
procedures already described [i.e., by observing the M’s associated with
intersections of locus and circles at adjacent points or by graphical
division of KG and (1 4+ K@) vectors at these points]. The frequency
and height of the peak is thus easily determined.

By inverting the method it can be used to determine the value of K,
in KG(jw), that will correspond to some specified value of the peak in the
0.(jw)/0:(jw) amplitude curve. One plots the circle with an M value
corresponding to the height of the peak required (e.g., 1§) and then
adjusts the value of the gain factor K until the locus corresponding to
this K is tangent to the circle.!

Operations on Transfer Loci: Scale Changes.—An operation of con-
siderable importance in many problems is the determination of optimal
values of the gain K in the transfer function KG(jw). Since K is a con-
stant and independent of frequency, the effect of changes in it may be
shown either by plotting KG(jw) for different values of K or by plotting
the locus of (7(jw) and regarding changes in the gain factor K as correspond-
ing to changes in the magnitude of the scale units of the real and imaginary
axes. Each of these points of view is used in different procedures for
determining the optimal value of K in servo-system adjustment.

Multiplication of Loci.—Another operation that will be found to be
important in procedures for adjustment of servomechanisms is that of
locus multiplication. It corresponds to the analytic operation of multi-
‘plying two transfer functions and the physical operation of connecting
two networks in cascade. Figure 10-20 shows two loci, A and B, each
of which can be assumed to represent the transfer function of two units
connected in cascade. How may the locus of the over-all system 4 - B
be obtained from their individual loci? The appropriate procedure
follows directly from the fact that each locus represents a set of vectors
and that any vector (corresponding to a complex number) stands for
the transfer function of a given physical component at a particular fre-
quency. Multiplication of loci is therefore equivalent to multiplication,
at each of a number of angular frequencies, of the vectors (or complex

! Hall also gives two other methods of finding the optimum K, i.e., the value of K
corresponding to a specified peak in the 6,(jw)/8:(jw) amplitude curve. One method
consists in drawing various loci corresponding to different K values and finding for
each locus the magnitude of the amplitude pesk by the graphical division method.
The K corresponding to the required peak is finally determined by interpolation. The
other method, which he considers the simplest of the three, is based on the plotting of
the G(ju) locus instead of the KG(jw) locus. The details are given by Hall, op. cit.,
pp. 52ff. It seems to the present writer that the simplest method now available for
adjusting K is that given in relation to the decibel-log w method of plotting later on
in this section.
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numbers) corresponding to that frequency on the two curves. Such
multiplication is carried out by arithmetic multiplication of the lengths
of the vectors to give the absolute valie of the product and addition of
the angles of the two vectors. The nature of the resultant locus may be
sketched in approximately by inspection or determined more exactly
through the aid of ruler and dividers. Locus C in the figure represents
the product of loci 4 and B.

Division can be carried through by the inverse process. Division
of locus 4 by locus B will therefore be carried out, at any given frequency,
by dividing the length of vector 4

o

by that of B to give the resultant 8
length of the quotient and by sub- g
tracting the angle of vector B from D KG(jw) plane
that of A to give the phase angle £
of the quotient. — —1+40 wR_e_a:"is

Operations on Decibel-log w and ;;_;_; = \C\‘~-—’/ B
Phase-margi.n Diagrams.—The Locus of B
chief operations that may be per- corrected system 4 Locus of
formed on transfer loci, descri.bed inig:egi:lal
above, find a parallel in operations ;—:&‘;ﬁ:{)eww controller
that may be performed upon correction yu-»o
decibel-log «w diagrams. The

. . . . s e, 10-20.—Correction of system with
starting point in both cases is, of velocity log error (locus A) by means of

course, the nature of the operation integral controller (locus. B). The locus of
carried out on the transfer function. e corrected system C equals 4 times B.

Chonges in the constant-gain factor K in the feedback transfer function
K(@(jw) are represented by changes in the vertical level of the decibel-
log w gain curve relative to the 0-db axis. A given curve moves up as
the gain increases and down as it decreases, the amount of change cor-
responding to the change in gain in decibels.

Since the gain factor K is independent of frequency, changes in it
must alter the gain or amplitude function equally at all values of w.
Hence there can be no change in the shape of the gain curve, but only in
its level.

A convenient way of determining how changes in the constant-gain
factor K will influence performance properties of the system is provided
by plotting the gain curves and phase curves on separate pieces of paper.
Thus if the gain curve corresponding to a constant-gain factor of 1 (or
0 db) is plotted on a transparent piece of paper, the phase curve and
coordinate scales on a second graph, and the first laid over the second,
then the height of the gain curve may be readily shifted to correspond to
different values of Az As the level of the gain curve changes with K, its
relation to the phase curve will change to provide measures of system
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stability, as described in the previous section. The phase curve will
not change with K, however, since it depends only on the shape of the
gain curve and not on its {evel. The shifts in level of the gain curve may
also be used to determine the effects on system accuracy, as represented
by the intercepts of the gain curve with the 0-db axis (as discussed in
Sec. 10-4). This method for determining the optimum gain K compatible
with system stability will probably be found easier than that involving
operations on the transfer locus intended to provide a specified peak in the
8,(jw)/0:(jw) amplitude curve.

Multiplication of two transfer functions can be carried out on the
decibel-log w diagrams by addition of the gain curves corresponding to
the two functions to give the gain curve of the product and addition of
the phase curves to give the phase curve of the product. The correctness
of this procedure can be demonstrated by the familiar procedure of
taking logarithms of the product. Thus, let

K:Gr(juw) = KGau(jw)KiGr(jw)

where K G4(jw) = transfer function of unit a,
KyGhijw) = transfer function of unit b, )
K:Gr(jw) = transfer function of the units ¢ and b connected in
cascade.
The K symbols represent constants, and G(jw) symbols represent the
frequency-dependent parts of the transfer functions. Then
20 log |K+Gr(jw)| = 20 log |K.G.(jw)| + 20 log | KiGu(jw)].

" This equation states that if the functions corresponding to the first
and second terms on the right-hand side are plotted separately, their
sum will be the function on the left. But the decibel gain curves consti-
tute the graphs of these functions; hence the gain curve of the product
can be found by adding the gain curves of the components.

The rule for adding phase curves can be derived by writing the various
transfer functions in exponential form and taking logarithms as before.
Thus, if the subseripts have the same meaning as above and each transfer
function is written in the form Re¢, where R represents the amplitude
ratio, ¢ the phase angle, and R and ¢ are each regarded as functions of
(jw), then

Rrei*t = Rei%Ryei%,

Taking the natural logarithm of both sides,

In Rr +j¢r =In Ra+j¢u+ In Rb+j¢b
=In R, + In Ry + j{(¢a + o).
Equating real and imaginary parts of both sides,
In Br = In R, + In R,,
Jor = jlda + ¢v);
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that is, ¢r(jw) = ¢a(jw) + ®»(jw). This final equation is equivalent to
the statement that the separate phase curves of components a and b,
when added together, give the phase curve of the two units in cascade.

The operation for division of two transfer functions can be inferred
immediately from the procedure for multiplication. Since the log of the
quotient of two numbers is the log of the dividend minus the log of the
divisor, an equivalent rule will hold for the guotient of two transfer
functions. Hence, to obtain the amplitude function of the quotient, one
subtracts the gain curve of the divisor transfer function from that of the
dividend; to obtain the phase curve of the quotient, the phase curve of
divisor function is subtracted from that of dividend function. That is to
say, the rule for multiplication is used, but with the amplitude and phase
curves of divisor transfer function given a negative sign.

If we turn now to the phase-margin diagram, we find that the procedure
of representing changes in gain of the transfer function by changes in
height of the curve still holds. For the phase curve associated with a
given gain curve depends only on the shape of the gain curve and
not on its level or distance from the 0-db axis.! Hence, correspond-
ing to a gain curve of a given shape, there will be a unique phase curve
and therefore a unique phase-margin diagram. Changing the gain factor
of the transfer function will alter merely the level of the gain curve and
not its shape. Hence there will he no change in the phase curve or the
shape of phase-margin diagram. Changes in gain will thus be repre-
sehted only by a constant change in the decibel coordinate of the phase-
margin diagram for all vatues of w. That is to say, there will be a change
only in the height of the curve as a whole. Graphical multiplication
and division of transfer functions by means of phase-margin diagrams
may be carried out by procedures analogous to those used for multiplica-
tion and division of transfer loct. It is desirable, however, to use the
phase-angle reference axis rather than the phase-margin reference axis.
Then, if the phase-margin curves representing the different transfer
functions are plotted, the phase-margin curve representing their product
can be obtained by adding the ordinates (gain in decibels) corresponding
to a particular value of w on the two curves and, similarly, by adding the
abscissas representing phase angle. This procedure carried out for the
necessary range of values of w provides the data for the over-all phase-
margin curve. The same information may be obtained more easily,
however, from the decibel-log w curves.

The operations required for graphical computation of the 8,(jw)/6:(jw)

t This conclusion follows from the relations established by Bode between the gain
and phase functions of minimum phase syvstems. See H. W. Bode, “Relations

hetween Attenuation and Phase in Feedback Amplifier Design,’”” Bell System Tech.
Jour., 19, 421-454, July 1940.
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function from the feedback transfer function can also be carried out with
the phase-margin diagrams. The procedure is directly analogous to that
involving families of circles corresponding to constant [0,(jw)/6:(jw)
ratios and constant phase relation between 6, and 6,. The same data
[amplitude ratio and phase of 8,(jw)/E(jw)] represented in plots of these
circles as transfer loci on a complex plane may be used in plots upon a
phase-margin diagram. The resultant curves are no longer circles, but
they may serve the same function as before. Each curve in one set
corresponds to a constant ratio |6.(jw)|/16:(jw)]. Each curve in a second
set corresponds to a constant phase angle ¢ equal to arc 8,(jw) — arc 6,(jw).
The intersections of these curves with the phase-margin curve represent-
ing any given system provide the duta for determining the amplitude
and phase response curves for 6,(jw)/8;(jw).!

The other graphical method described in the early part of this section
for computing 8.(jw)/0:(jw) and E(jw)/6;(jw) functions from KG (jw) can-
not be applied to decibel frequency diagrams, since the method involves
addition of vectors and not solely multiplication or division. Logarithmic
plots do not provide any equivalent for addition other than previous
addition of the magnitudes themselves, since on a logarithmic diagram
addition of curves is used to represent multiplication of the original
functions.

! Charts for carrying out this method may be found in Vol. 25.




CHAPTER 11

SERVO THEORY: EVALUATION AND CORRECTION
OF SYSTEM PERFORMANCE AND SPECIAL PROBLEMS

By G. L. KrEEzErR anp I. A. GREENWOOD, JR.!
EVALUATION OF SYSTEM PERFORMANCE

Once the performance properties of a given system have been deter-
mined by such methods as are reviewed in the preceding chapters, there
arises the question of whether or not the performance meets specifications.
The present section is concerned with ways available for thus evaluating
a system. The notion of evaluation implies comparison of a test object
with standards. Since no conventional set of standards of servo-system
performance seems to have been set up, the standards adopted depending
rather on the nature of the specific problem, the discussion may be limited
to a brief survey of the kinds of performance property that are important
and to an itemization of different ways of making the comparison of
performance with a standard. These procedures are fairly obvious and
may be reviewed briefly. Three methods may be mentioned: evaluation
of the system on the basis of response curves, evaluation on the basis ot
a set of specifications of required performance properties, and evaluation
by way of a single figure of merit for the entire system.

11-1. Response Curves.—On the graphical plot of the error or output
time functions, lines or curves may be drawn indicating the allowable
range within which the response curves may lie, thus making readily
perceptible in just what region of the curve the standards of performance
are not met. It may be specified, for example, that the transient or
steady-state error for a given type of input should not exceed 1 per cent
of the input after a given interval of time. Horizontal lines drawn at
appropriate distances above and below the time axis of the error curve
will show at a glance if this requirement is met. Similar procedures may
be used to represent graphically other specifications of the required
response.

11.2. Specifications for a Set of Performance Properties.—The
required performance, instead of being represented on a graph, may be

'Sec 11-12 is by I. A. Greenwood. Jr.; the rest of Chap. 11 is by G. L. Kreezer.
319
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formulated numerically in terms of the important properties of perform-
ance, classifiable under the heads of stability and accuracy.

Stability —A servo system is said to be unstable if it shows oscilla-
tions that do not finally damp out.! This condition might be represented
either by constant amplitude oscillations or by oscillations of steadily
increasing amplitude. In any physical system the latter condition can-
not continue beyond a certain point. After the amplitude passes a cer-
tain magnitude, regions of nonlinearity or approach to cutoff points will
be reached in one or more of the system elements and the amplitude of the
oscillations will fail to increase further. This transition to a nonlinear
region will not, however, be indicated by the mathematical solution of a
system assumed to be linear. Even though a system is found to be
stable, in the sense specified above, its performance may be unacceptable
if there are positively damped oscillations present that die out too
slowly.?> The specifications with respect to stability may be given in
terms of the allowable number of oscillations or ““overshoots’ before
the oscillations fall below a given amplitude; in terms of the magnitude
of the real part of the complex root, which determines the rate of damp-
ing; in terms of the logarithmic decrement shown by successive cycles;
or in terms of the damping ratio ¢ for certain types of system. From
the point of view of the frequency approach, stability requirements may
be specified in terms of phase and gain margins.

Aeccuracy.—The allowable transient error may be specified in terms of
the interval of time within which the error must fall to a given absolute
magnitude or to a certain percentage of the input signal or in terms of the
required time constant. The latter specification is equivalent, in the case
of a stimple exponential error curve, to the requirement that the error
fall to 36.8 per cent of its initial value in the time specified for the time
constant.

Under the head of steady-state errors, those of most interest are the
displacement or static error and the velocity lag error. The standards in
these respects may be given simply as the maximum allowable magnitudes
of these two quantities.

11.3. Unitary Figures of Merit.—Some attempts have been made to
provide some unitary measure of the “goodness” of a servo system in
order to indicate its over-all value without restriction to a particular

!'In mechanics the designation of a system as unstable is limited to those which
give rise to oscillations or phenomena of progressively increasing magnitude. Such
phenomena, in a linear system, correspond to a charaeteristic equation with roots that
lie in the right half plane. In physical servo syvstems, it is customary to designate as
unstable systems exhibiting oscillations of constant amplitude, even though in a strict
mathematical sense they might be regarded as stable.

2 This question of the rate at which oscillations damp out might possibly be con-
sidered more properly a problem of the transient error rather than of stability.
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type of input function. Thus Hazen! and Brown? have proposed ways
of obtaining such over-all ratings of the system. More elaborate mathe-
matical procedures have been discussed by Phillips® and by Hall* on the
basis of the minimum integral squared or mean squared error. In
terms of this criterion, the best system or adjustment of a system is
considered to be that which makes the following function of the error
curve a minimum:

1= ﬁm (E(®)]2 dt. (1)

CORRECTION OF SERVO-SYSTEM PERFORMANCE

On the basis of the principles covered to this point, one may deter-
mine the response of a given system to various types of inputs and
determine how this response compares with standards or specifications.
Suppose the computed performance is deficient in some respect. How
can the system be adjusted or corrected so as to eliminate these defi-
ciencies? The present section of the chapter will deal with this question
of servo-system correction. The problem can often be conveniently
fractionated. One may determine first the types of device that can be
used to eliminate a particular type of deficiency and then go on to deter-
mine the quantitative adjustments necessary in a given device so that the
system will meet specifications. We shall be concerned with both types
of problem. The transient method of analysis is often better adapted
to the first type of problem, helping to give one an insight into the appro-
priateness of a particular kind of corrective network; the frequency
method of analysis, on the other hand, is usually more effective in the
problem of specific design. We shall have occasion to make use of both
methods; no attempt will be made to carry both through completely
on all problems. Interest will center rather in illustrating the ways in
which each method can contribute to the general question of system
correction. The survey of system deficiencies will deal with the same
performance properties itemized in Sec. 11-2. Corrective procedures for
stabilization will be considered first, followed by procedures for improve-
ment of system accuracy.

U H. L. Hazen, ‘“ Theory of Servo-mechanisms,”’ Jour. Franklin Inst., 218, 3, 322f.,
September 1934.

2 G. 8. Brown, Transient Behavior and Design of Servomechanisms, privately
printed, Massachusetts Institute of Technology, 1943 and 1945, p. 14.

3R. S. Phillips, “Servo Mechanisms,” RL Internal Report No. 81-6, May 11,
1943, pp. 1-32.

4+ A. C. Hall, Analysis and Synthesis of Linear Servomechanisms, Technology Press,
Massachusetts Institute of Technology, 1943, pp. 19-27.
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STABILIZATION PROCEDURES

Mathematical analysis or empirical test may show the servo system
to be unstable or to possess an insufficient stability margin. How can
its stability be increased? Three methods have been found particularly
useful: (1) introduction of phase advance! or a derivative error controller;
(2) feedback of the derivative of the output signal, a method commonly
known as tachometer feedback; and (3) the use of oscillation dampers.
We wish to determine, in terms of the methods developed in the sections
on transient and frequency analysis, why these devices are effective and
how the correct parameters for a given device may be determined.

11.4. Derivative Error Controller (Phase Advance). Transient
Analysis.—The simplest type of continuous controller is one in which the
transfer function is a constant, as in the proportional servo. This type
of system has been analyzed in Sec. 9-8. If the performance require-
ments are not too stringent, this simple system may prove satisfactory.
In certain applications, however, it shows defects that require the devel-
opment of a more complex type of controller.

The defects arise from the following two circumstances:

1. In the proportional controller the parameter that is effective in
preventing oscillation, if it is sufficiently large, is the viscous fric-
tion f. But this parameter also involves the dissipation of
energy in the system by heat. Unlike inertia or elastance param-
eters in the output load, it does not merely involve temporary
storage of energy which is subsequently returned to the system.
Consequently, if this damping term must be large in order to
stabilize the system, on account of the other special properties
of the system (such as a large inertia J or a large gain factor ko),
then there will be a large power loss that will be of use only for
stabilizing the system. This loss is not serious, however, for small
instrument servos.

2. A second type of defect arises when one needs to utilize an f of
appreciable magnitude for damping the system and yet needs to
bring the velocity lag error under a given level. The magnitude
of the velocity lag error is proportional to f as shown by Eq. (3).
It is impossible, therefore, both to increase f for damping purposes
and to keep the velocity lag error from increasing. These rela-
tions are summarized by Eqgs. (2) and (3). Equation (2) shows
that the damping ratio { increases directly with f, but Eq. (3)
shows that the velocity lag error 8, does so also.

1 The terms “phase advance” and “phase lead” are used interchangably.
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; 2

2 (2
_f

6. = i N, 3)

where N is slope of input ramp function.

The so-called derivative error controller has been developed in order to
provide for a damping term in the characteristic equation of a servo
system that will not have the disadvantages just enumerated for the
viscous friction parameter f. Equation (4), the error equation of a
proportional system, shows the presence of a term fs in the characteristic
function. st s '

s s
:]82 + fS + ko oi(s)- (4)

The first two terms of the characteristic function are due to the denomi-
nator of H(s); the last to C'(s). Without the fs term in the characteristic
function, the system would be oscillatory.! In this instance this term
is provided by the viscous friction present in the output load. If a term
of like nature could be provided by means of the C(s) member and the
fs term then reduced to zero by making the viscous friction f equal to
zero or negligible, we should have a means of stabilizing the system with-
out the defects enumerated above. This result is achieved by construct-
ing the controller member so it operates on the error in the manner
indicated by Eq. (5).

E(s) =

dE(t).

T(t) = koE(t) + Fy

The transfer function of the controller is readily obtained.?

Te(s) _ _
E(s) = €O = ko ks, (6)

If in the denominator of Eq. (4) the new value of C(s) is substituted for
ko, and the fs term originally provided by H(s) is reduced to zero, we
obtain
Js?

T F fos F o 08 ™
The characteristic equation, Eq. (8), now has a damping term k;s, which
does not depend on viscous friction; consequently, the defects introduced
by an fs term will be eliminated.

Js? 4+ ks + ko = 0. (8)

1 See, for example, the solution of the equation of a system in which f is equal te
zero in Sec. 9-8.
2 The method has been given in Sec. 9-3.

E(s) =
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In addition to the introduction of a term corresponding to the first
derivative of the error, controllers have been proposed that introduce,
in addition, a term corresponding to the second derivative of the error.
It may have either a positive or negative sign. If the sign is positive,
this new term has the effect of increasing the inertia of the system; if it
is negative, of decreasing the effective inertia and hence of contributing
to system stability. Tor discussions of this type of controller from the
transient point of view, the reports of Minorsky,! Brown,? and Harris?
should be consulted.

The method described above may be used as a basis for formulating
a general procedure for determining the form of the controller transfer
function required to correct a given system. The steps required may be
outlined as follows:

1. Write the equation of the error function K(s), with the controller
represented by C(s).
In the problem above, with f assumed to be zero and 6.(f) a
step function,

J st 1 Js

E® = roy06)s = 7o ¥ 06y ®

2. Decide on the form of the error function or, more specifically, of
the characteristic equation necessary to produce a time solution
with the required properties.

In the present problem, the characteristic equation must have
the form given by Eq. (8), with a sufficiently large damping param-
eter k.

3. Write the transfer function C(s) in a form that meets the require-
ments of Step 2.

In this problem, it is necessary in Eq. (9) that C(s) = ko + ks,
as should be apparent from comparison of Eq. (8) with the char-
acteristic equation of Eq. (9).

4. Design a physical controller that will have the transfer function
specified for C(s).

In this problem, the required controller is provided approxi-
mately by the networks of Fig. 11-3.

It will be found that this same general procedure can be applied
to meet other special requirements,

t N. Minorsky, ““ Directional Stability of Automatically Steered Bodies,” Jour. Am.
Soc. Naval Eng., 34, No. 2, 280-309, May 1922.

2 Brown, op. cit., pp. 17-26.

*H. Harris, “The Analysis and Design of Servomechanisms,” NDRC Report,
1942, pp. 19-22.
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Frequency Analysis.—Let us consider now how the problem of system
stabilization is attacked on the basis of the frequency approach, more
particularly through the use of the transfer locus method of representa-
tion. Curves A, B, and C of Fig. 111 represent the loci of a propor-
tional servo system with progressively decreasing values of gain K.
The Nyquist criterion immediately shows that the system represented
by A is unstable since locus A encloses the critical point (—1,0). What
corrective measures are possible? Inspection of the figure suggests two
alternative ‘procedures. The gain of the
system may be reduced to give stable loci
such as B or C. Or the whole locus or
the part of it in the neighborhood of the B ’F(,g:“;’
eritical point may be rotated inacounter- _y4
clockwise direction so that the critical
point will no longer be enclosed and the
locus will show the proper phase and gain
margins.

System stabilization through a reduc-
tion in gain seems an attractive pro-
cedure, since it is relatively simple to
carry out physically and, except for
special types of system,! it should, if
carried far enough, always be effective in Fie. 11-1.—Effect of reduction in
producing stabilization. For as gain is gain on transfer locus of unstable

. servo system.

reduced, the locus contracts until it finally

no longer encloses the critical point.? Unfortunately, gain reduction can-
not be relied on as a generally satisfactory procedure for stabilization,
since it will also reduce the accuracy of the system by increasing the
steady-state and transient errors. It may be used, therefore, only up to
the point permitted by specifications of required accuracy. An early
step required of the designer, therefore, is to compute the minimum gain
required to meet accuracy specifications. Let us suppose that after this
has been done, the gain requirement is such as to give rise to a locus of the
form of 4 in Fig. 11-1 and that stabilization by further reduction in gain
is therefore not feasible. We must thercfore consider the second pro-
cedure proposed above.

1 It cannot be depended on to produce stabilization in systems with loci of the type
found in conditionally stable systems and in cases in which the physical nature of the
components are such as to prevent gain reduction to be carried beyond a given point
without introduction of new disturbing factors.

2 Or alternatively, as suggested in Sec. 10-5, one may think of only the G(jw) part
of the feedback transfer function being plotted and the gain K represented by the
scale value. As K decreases, the critical point will move to the left on the negative
real axis and thus may be shifted to the left of the locus.
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To rotate all or parts of a locus, such as curve A in Fig. 11-2, in a
counterclockwise direction, it is apparent that the given locus must be
multiplied by one with leading phase angles, such as given by Curves B,
C, and D in Fig. 11-2. As indicated in Sec. 10-5, multiplication of two
loci at any specific frequency means multiplication of the corresponding
vectors, and this operation consists of addition of the phase angles and
multiplication of the lengths of the vectors. Hence, to reduce the abso-
lute value of any of the negative

)
8la phase angles of Curve A, they
B KGyw) plane  must be added to positive phase
~ ¢ angles, such as are provided by
loci B, C, and D. Multiplication of
D -
140 A oo the unstable locus 4 by phase-lead

6 Teal e ot loci B, C, and D lfeads toloci B/, (',

ﬁ)'_/ B and D', respectively. Nyquist’s

4 criterion shows immediately that

(a) the systems represented by the
latter three loci will be stable.

At this point it is of interest to
compare the results derived from
the transient and from the fre-
quency approach to the present

b problem of system stabilization.
On the basis of the transient ap-

0 proach, it was concluded that an
(b) unstable proportional servosystem

Iig. 11-2.—(a) Different types of phase- coul e stabili . .
lead loci and their effect on the locus A4 of an ould be stabilized b_V means of a

unstable system; (b) transfer locus of a derivative error COIltl‘()lleI‘, one
derivative controller. with a transfer function of the
form given by Eq. (6); on the basis of the frequency approach, it
was concluded that the system could be stabilized by introducing in
cascade devices possessing loci with a suitable range of positive phase
angles as in loci B, C, and D of Fig. 11-2a. Are these two proposals two
ways of saying the same thing, or do they point to different kinds of
corrective device? An answer can be obtained by expressing both prin-
ciples in the same terms. Let us plot the transfer function of the deriva-
tive error controller as a transfer locus. Substituting jw for s in Eq. (6),
we obtain

T(jw) _ ki .

This transfer function can be plotted by inspection to give locus b of
Fig. 11-2b. At w = 0, the transfer vector equals ko; at w = 1, it equals
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ko + jlki/ko); and so on. We see that Jocus b of the derivative error
controller is identical in form with phase-lead locus B of Tig. 11-2a. The
two approaches thus lead to consistent results.  The frequency approach,
however, suggests the suitability of a wider class of corrective devices
(such as those corresponding.to loci C and D of Fig. 11-2a) than has the
transient approach. Locus b, orresponding to an ideal derivative net-
work, can be considered a special case of the general class of loci showing
a range of positive phase angles.

Can loci of this class be physieally realized? It is commonly known
that an exact synthesis of a derivative network is not possible. No passive
network can be made to yield an output proportional to the mathematical
derivative of the input, for all types of input. Consequently, a network

G
——0
R
thput Ry ka Qutput
Amplifer o
la) .
c, [
Ry . Ry B
’rﬁ“l 3 g R; ay Qutput
Amplifier P
(b)
First umt Second unit

F1a. 11:3.—Circuit diagrams of (a) basic and (b) compound lead controllers.

cannot be built that will have a locus like that of B (Fig. 11-2a). Physical
networks can be construeted, however, that will correspond to the other
loct represented, such as C and D. Such loci can be used to bring about
a counterclockwise rotation of the unstable locus (as A) in the region
in which we are primarily interested, the neighborhood of the critical
point. Networks capable of approximating a derivative network, in
the sense that they provide for positive phase advance, can thus be
realized and used as a basis for stabilization adjustments.

Circuit diagrams of physical networks that can be used for this
purpose are given in Fig. 11:3. The circuit of Fig. 11-3a, designated by
Hall as a basic lead controller, shows a passive network very commonly
used for obtaining the approximate derivative of a signal, in cascade
with an isolating amplifier. It corresponds to a locus of type D in Fig.
11-2¢. Figure 11-3b shows a compound lead controller. Its transfer
function is represented by a locus of type C in Fig. 11-2a. This type of
controller is capable of providing a greater maximum phase advance
than the basic lead controller and approximates a second derivative error
controller. For a discussion of the factors to be taken into account
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in the selection of a particular type of lead controller and of methods for
adjusting its parameters to produce the necessary amount of phase
advance, the detailed report by Hall should be consulted.!

The stabilization principles discussed above in relation to the transfer
locus may be reformulated for use with the dectbel-log frequency plots and
decibel phase-margin diagrams. It will be sufficient here, in view of the
detailed treatment of the decibel method in the previous chapter, to
show how a typical phase-advance controller is represented on a decibel
plot and the effect of incorporating such a controller in a sample system.

Let us take the basic lead controller of Fig. 11-3 as our example.
It is readily shown by the method described in Sec. 9-3 that the transfer
function of the controller is given? by Eq. (11).

KGals) =y, — B (11)
e.—(s) R + Rz
! 1 + RzC 28
_ lea 1 + Rngs
" Ri+ R, RiR:C)s

'Y R +r
= ka 1 + adeS
= 1E T’ (12)
where Ty = R;R.C:/(R: + R.), the network time constant, and
o it R
d R,

the attenuation constant. Equation (12) gives the transfer function
of the phase advance controller in a form suitable for plotting by the
decibel approximation method previously described. Considering only
the frequency dependent part, it is given as a frequency transfer function
by

.\ _ JewaaTa +_1
Ga(jo) == p

(13)
The constant ka/aa will merely shift the gain curve upward by an amount
equal to the constant, in decibels. A brief examination of Eq. (13)
permits us to plot it by inspection. We note, first of all, that as

w =0, [Ga(jw)law — 0.

The low-frequency asymptote will therefore coincide with the 0-db axis.
The corner points will be at w = 1/a4Ts and w = 1/T,. Since aq is
greater than 1, as7s > T, thus indicating that the corner point corre-

1 Hall, op. cit., pp. 89-127.
2 Hall, op. cit., pp. 95f. See also Harris, op. cit., pp. 39f.
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sponding to 1/a47s occurs first, i.e., at the lower frequency. When
the low-frequency asymptote reaches this corner point, with increasing
frequency, it will slope up at 6 db per octave corresponding to the factor
in the numerator of Eq. (13)] until it reaches w = 1/Ty, at which point
it is added to a slope of —6 db per octave (corresponding to the denomi-
nator term), thus resulting in another horizontal line with a net slope of
0 db per octave. This gain curve is plotted as Curve A in the lower
part of Fig. 11-4.

The upper gain curves of Fig. 11-4 show the effect of cascading the
phase-lead controller with a proportional servo system. The broken line
starting at o = 1/a4T4 shows how
the gain curve of the servo system Gain
(B), represented by the solid line, ind
is altered by introduction of the
lead network. The effect is to
reduce the average rate at which
the gain level falls with increasing !
frequency. This effect is impor- i
tant, since, as Bode! has empha- :

|
]
i
i

. — 6 db/octave
12 db/actave

~~=—(—12+6)db/octave
\\C

RS —-12+0) db
| N T oclave

sized, the magnitude of the phase
lag is directly (.iepeerent on the +6 dbfoctave
rate of attenuation, increasing as Jl\
the rate of attenuation increases. 0
The phase-lead controller, by Ty T wlsocgalz——
decreasing the average rate of Fia. 11-4.—Effect of adding decibel gain
. . curve (A) of derivative network to that of
attenuation in the frequency range [ oportional servo system (B).
in which gain level is greater than
zero, decreases the net phase lag and so permits the gain crossover to occur
before the phase lag has fallen to 180°. Consequently, a system that
might otherwise be unstable becomes stable. In general, the introduction
of a phase-lead network decreases the rate at which the phase curve
approaches the phase crossover point by decreasing the average attenua-
tion rate of the gain curve.

11.5. Derivative (Tachometer) Feedback.—In many systems it may
be inconvenient to insert a network at a point lying between the error
detector and the servomotor for the purpose of taking the derivative of
the error, or the nature of the physical signal at accessible points may be
such that a suitable differentiating device may not be constructed easily.
In such cases, it is often possible to achieve the same effect by a device
inserted at some other, more accessible point. Figure 11-5 is a block
diagram of a servo system characterized by what is commonly called

1 H. W. Bode, ‘“Relations between Attenuation and Phase in Feedback Amplifier
Design, Bell System Tech. Jour., 19, July 1940.
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tachometer feedback. The tachometer feeds back to the input of the
amplifier an electrical signal proportional to the rate of motion of the
output displacement. If the sign of the feedback signal is positive,
this signal will help to oppose the effect of any viscous friction present;
if negative, it will supplement or substitute for viscous friction and
thereby help to stabilize the system. How are these effects to be under-
stood in relation to our previous analysis of the factors determining
stability?

Consider first the error equation of a proportional servo system as
given by Eq. (14),
Js? 4+ fs

EG) = yor s+ ke

8:(s). (14)

As pointed out in Sec. 9-8, if a term of the form of fs is absent from the
denominator, the system will show oscillations of constant amplitude.

ko
N ———
6,(3 E(s T, B,
h(3) (s) k ec(s) ke c(s) ; h(3)
J8 S
Potentiometer Controller Load member
-1 kg8

-1
F1a. 11-5.—Proportional servo system with tachometer feedback.

The damping out of these oscillations can come about either through the
presence of viscous friction f, which provides a term fs in the charac-
teristic equation, or a network that takes the derivative of the error to
provide a term k;s of the same form. Similarly, a device that follows
the output 6, and feeds back a signal proportional to its derivative may
also be used for the introduction of a term of this form.

This result is readily demonstrated analytically. The relevant
transfer functions and the symbols for signals at various points are shown
on the block diagram. The diagram represents the same proportional
servo system considered previously, with the addition of a feedback
link from 6, to the amplifier input. The over-all gain factor ko is regarded
as broken up into k,, the conversion factor of a potentiometer for con-
verting error angle into error voltage, and k,, the conversion factor of the
amplifier-motor combination. The dimensions of %, will be volts per
radian error and of k,, torque in pound-feet per volt error. It will be
noted that the feedback transfer function represents a device that takes
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the derivative of 6,(?).

dt
er(s) = kas,(s).

er(t) = kddL"(Q;} (15)

This operation is readily performed by a d-c electrical generator which,
when mounted on the output shaft of the motor, will deliver a d-c voltage
proportional to the shaft angular velocity. A (—1) conversion factor
has been introduced after er to symbolize the fact that the feedback link
is connected so that er will be subtracted from eg rather than added to
it. Some means are provided to control the size of the proportionality
factor k.

Let us now find the feedback transfer function 6,(s)/E(s). The
necessary component equations are

0.(5) = Jor g (), (16)
To(s) = kalez(s) — er(s)], (17)
ex(s) = kpE(s), (18)
er(s) = kasB,(s). (19)

Substituting er(s) and er(s) as given by Egs. (18) and (19) into Eq.
(17), and substituting 7.(s) as given by Eq. (17) into Eq. (16), we obtain

1
00(8) = m [kaka(s) - kak‘dSOO(s)].
Solving for 8,(s)/E(s),
.(s) kokp ko

(20)

E(s) ~ TS+ (J F kakays TS24 (f + Kaka)s

Comparison of this equation with the feedback transfer function given
by Eq. (9-21) shows that (f + k.k4) here plays exactly the same role as
/ does in the system without tachometer feedback. This fact indicates,
first of all, that the transient and frequency analyses given in Secs. 9-8
and 10-3 for a system with viscous friction will hold here too, with the
new term substituted for f. It indicates, second, that we might permit
the viscous friction f to equal zero and its role in stabilizing the system
to be taken over by k.ks. Since k,, the gain of amplifier-motor combina-
tion can be assumed to be given, ks is the only parameter that would
need to be controlled. It can be selected so that the product k.ks will
be equal numerically to whatever value of fis found necessary to suitably
damp the system, since f and k.ks have exactly the same dimensions
(torque per radian-per-second).

The fact that the term (f + kokq) in Eq. (20) plays the same role as
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f alone in the equation of a proportional servo (one with viscous friction
in the load and no tachometer feedback) means that this term will also
take the place of f in the equation for the velocity lag error. This error
will consequently be given by

f + kaka
ko
instead of by (f/k¢)N, as in Eq. (9-70). A simple method to prevent
the tachometer feedback from contributing to the velocity error is to
place a condenser in the feedback path between the tachometer and
amplifier. The condenser may, in physical terms, be regarded perhaps
as blocking the low-frequency signals that contribute to the steady-
state velocity error and passing without interference the higher-frequency
sign